Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Quantum loop groups and shuffle algebras via Lyndon words.(English)Zbl 07807335

This paper studies PBW bases of the untwisted quantum loop group using the combinatorics of loop words. The authors take a triangular decomposition of the quantum loop group and embed the positive part of this decomposition into a loop version of the shuffle algebra. This, in particular, allows for a description of the roots of this positive parts in terms of the so-called standard Lyndon loop words. As an application, it is shown that a certain homomorphism from the positive half of the quantum loop group to the trigonometric degeneration of Feigin-Odesskii’s shuffle algebra, constructed earlier by Enriquez, is an isomorphism.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

Cite

References:

[1]Angiono, I. E., A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems, J. Eur. Math. Soc., 17, 10, 2643-2671 (2015) ·Zbl 1343.16022
[2]Beck, J., Convex bases of PBW type for quantum affine algebras, Commun. Math. Phys., 165, 1, 193-199 (1994) ·Zbl 0828.17016
[3]Beck, J., Braid group action and quantum affine algebras, Commun. Math. Phys., 165, 3, 555-568 (1994) ·Zbl 0807.17013
[4]Clark, S.; Hill, D.; Wang, W., Quantum shuffles and quantum supergroups of basic type, Quantum Topol., 7, 3, 553-638 (2016) ·Zbl 1364.17017
[5]Damiani, I., A basis of type Poincare-Birkhoff-Witt for the quantum algebra of \(\hat{\text{sl}}(2)\), J. Algebra, 161, 2, 291-310 (1993) ·Zbl 0803.17003
[6]Damiani, I., Drinfeld realization of affine quantum algebras: the relations, Publ. Res. Inst. Math. Sci., 48, 3, 661-733 (2012) ·Zbl 1297.17009
[7]Ding, J.; Jing, N., On a combinatorial identity, Int. Math. Res. Not., 6, 325-332 (2000) ·Zbl 0951.05005
[8]V. Drinfeld, A new realization of Yangians and of quantum affine algebras, preprint, 1986, FTINT 30-86.
[9]Enriquez, B., On correlation functions of Drinfeld currents and shuffle algebras, Transform. Groups, 5, 2, 111-120 (2000) ·Zbl 0998.17019
[10]Enriquez, B., PBW and duality theorems for quantum groups and quantum current algebras, J. Lie Theory, 13, 1, 21-64 (2003) ·Zbl 1116.17008
[11]Enriquez, B.; Khoroshkin, S.; Pakuliak, S., Weight functions and Drinfeld currents, Commun. Math. Phys., 276, 3, 691-725 (2007) ·Zbl 1140.17010
[12]Feigin, B., Integrable systems, shuffle algebras, and Bethe equations, Trans. Mosc. Math. Soc., 203-246 (2016) ·Zbl 1416.17017
[13]Feigin, B.; Odesskii, A., Quantized moduli spaces of the bundles on the elliptic curve and their applications, (Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory. Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, Kiev, 2000. Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory. Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, Kiev, 2000, NATO Sci. Ser. II Math. Phys. Chem., vol. 35 (2001), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 123-137 ·Zbl 1076.14520
[14]Gavarini, F., A PBW basis for Lusztig’s form of untwisted affine quantum groups, Commun. Algebra, 27, 2, 903-918 (1999) ·Zbl 1014.17016
[15]Green, J., Quantum groups, Hall algebras and quantized shuffles, (Finite Reductive Groups (Luminy 1994). Finite Reductive Groups (Luminy 1994), Prog. Math., vol. 141 (1997), Birkhäuser), 273-290 ·Zbl 0890.17007
[16]Grojnowski, I., Affinizing quantum algebras: from D-modules to K-theory (1994), preprint ·Zbl 0819.17009
[17]Grosse, P., On quantum shuffle and quantum affine algebras, J. Algebra, 318, 2, 495-519 (2007) ·Zbl 1158.17005
[18]Hernandez, D., Representations of quantum affinizations and fusion product, Transform. Groups, 10, 2, 163-200 (2005) ·Zbl 1102.17009
[19]Hu, N.; Rosso, M.; Zhang, H., Two-parameter quantum affine algebra \(U_{r , s}( \hat{\mathfrak{sl}_n})\), Drinfel’d realization and quantum affine Lyndon basis, Commun. Math. Phys., 278, 2, 453-486 (2008) ·Zbl 1236.17021
[20]Humphreys, J., Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9 (1972), Springer-Verlag: Springer-Verlag New York ·Zbl 0254.17004
[21]Jantzen, J., Lectures on Quantum Groups, Graduate Studies in Mathematics (1996), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 0842.17012
[22]Kac, V., Infinite-Dimensional Lie Algebras (1990), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0716.17022
[23]Khoroshkin, S.; Tolstoy, V., The universal R-matrix for quantum untwisted affine Lie algebras, Funct. Anal. Appl., 26, 1, 69-71 (1992) ·Zbl 0758.17011
[24]Kirillov, A.; Reshetikhin, N., q-Weyl group and a multiplicative formula for universal R-matrices, Commun. Math. Phys., 134, 2, 421-431 (1990) ·Zbl 0723.17014
[25]Kleshchev, A.; Ram, A., Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann., 349, 4, 943-975 (2011) ·Zbl 1267.20010
[26]Lalonde, P.; Standard, R. A., Lyndon bases of Lie algebras and enveloping algebras, Trans. Am. Math. Soc., 347, 5, 1821-1830 (1995) ·Zbl 0833.17003
[27]Leclerc, B., Dual canonical bases, quantum shuffles and q-characters, Math. Z., 246, 4, 691-732 (2004) ·Zbl 1052.17008
[28]Levendorsky, S.; Ya, S., Some applications of the quantum Weyl groups, J. Geom. Phys., 7, 2, 241-254 (1990) ·Zbl 0729.17009
[29]Levendorsky, S.; Soibelman, Ya.; Stukopin, V., The quantum Weyl group and the universal quantum R-matrix for affine Lie algebra \(A_1^{( 1 )}\), Lett. Math. Phys., 27, 4, 253-264 (1993) ·Zbl 0776.17011
[30]Lusztig, G., Introduction to Quantum Groups (1993), Birkhäuser: Birkhäuser Boston ·Zbl 0788.17010
[31]Melançon, G., Combinatorics of Hall trees and Hall words, J. Comb. Theory, Ser. A, 59, 2, 285-308 (1992) ·Zbl 0761.05033
[32]Neguţ, A., The shuffle algebra revisited, Int. Math. Res. Not., 22, 6242-6275 (2014) ·Zbl 1310.16030
[33]Neguţ, A., Quantum toroidal and shuffle algebras, Adv. Math., 372, Article 107288 pp. (2020), 60 pp. ·Zbl 1460.17023
[34]Papi, P., A characterization of a special ordering in a root system, Proc. Am. Math. Soc., 120, 3, 661-665 (1994) ·Zbl 0799.20037
[35]Papi, P., Convex orderings in affine root systems, J. Algebra, 172, 3, 613-623 (1995) ·Zbl 0848.17017
[36]Papi, P., Convex orderings in affine root systems, II, J. Algebra, 186, 1, 72-91 (1996) ·Zbl 0884.17013
[37]Rosso, M., An analogue of P.B.W. theorem and the universal R-matrix for \(U_h \mathfrak{sl}(N + 1)\), Commun. Math. Phys., 124, 2, 307-318 (1989) ·Zbl 0694.17006
[38]Rosso, M., Quantum groups and quantum shuffles, Invent. Math., 133, 2, 399-416 (1998) ·Zbl 0912.17005
[39]M. Rosso, Lyndon bases and the multiplicative formula for R-matrices, unpublished.
[40]Schauenburg, P., A characterization of the Borel-like subalgebras of quantum enveloping algebras, Commun. Algebra, 24, 9, 2811-2823 (1996) ·Zbl 0856.17017
[41]Schiffmann, O.; Vasserot, E., Hall algebras of curves, commuting varieties and Langlands duality, Math. Ann., 353, 4, 1399-1451 (2012) ·Zbl 1252.14012
[42]Tsymbaliuk, A., Shuffle algebra realizations of type A super Yangians and quantum affine superalgebras for all Cartan data, Lett. Math. Phys., 110, 8, 2083-2111 (2020) ·Zbl 1464.17021
[43]Varagnolo, M.; Vasserot, E., K-theoretic Hall algebras, quantum groups and super quantum groups, Selecta Math. (N.S.), 28, Article 7 pp. (2022), 56 pp. ·Zbl 1511.17060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp