Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Universality for cokernels of random matrix products.(English)Zbl 07801728

For \(M\in \mathrm{M}_n(\mathbb{Z})\), the cokernel \(\mathbf{Cok}(M)=\mathbb{Z}^n/M \mathbb{Z}^n\). In this paper under review, the authors show that for \(M_1, \ldots, M_k \in \operatorname{Mat}_n(\mathbb{Z})\), the distribution of \(\mathbf{Cok}( M_1 \cdots M_k)\) converges to a universal one as \( n\to \infty\) for a general class of matrix entry distributions. More generally, they also show universal limits for the joint distribution of \(\mathbf{Cok}(M_1), \mathbf{Cok}(M_1M_2), \ldots \mathbf{Cok}(M_1 \cdots M_k)\). These results are extensions of the existing single-matrix universality case in the work ofM. M. Wood [Am. J. Math. 141, No. 2, 383–398 (2019;Zbl 1446.11170)].
As a consequence, they obtain an explicit universal distribution for coranks of random matrix products over \(\mathbb{F}_p\) as the matrix size tends to infinity.

MSC:

11M50 Relations with random matrices
15B52 Random matrices (algebraic aspects)
05E05 Symmetric functions and generalizations
05C80 Random graphs (graph-theoretic aspects)
60B20 Random matrices (probabilistic aspects)

Cite

References:

[1]Akemann, G.; Burda, Z.; Kieburg, M., From integrable to chaotic systems: universal local statistics of Lyapunov exponents. Europhys. Lett., 4 (2019)
[2]Banica, T.; Belinschi, S.; Capitaine, M.; Collins, B., Free Bessel laws. Can. J. Math., 3-37 (2011) ·Zbl 1218.46040
[3]Bellman, R., Limit theorems for non-commutative operations I. Duke Math. J., 3, 491-500 (1954) ·Zbl 0057.11202
[4]Benaych-Georges, F., On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions. Ann. Inst. Henri Poincaré Probab. Stat., 644-652 (2010) ·Zbl 1206.46055
[5]Belsley, E. D., Rates of convergence of Markov chains related to association schemes (1993), Harvard Univ., Ph.D. thesis
[6]Bhargava, M.; Kane, D.; Lenstra, H. W.; Poonen, B.; Rains, E., Modeling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves. Camb. J. Math., 3, 275-321 (2015) ·Zbl 1329.14071
[7]Boreico, I., Statistics of random integral matrices (2016), Stanford University, MR 4172218
[8]Borodin, A.; Corwin, I., Macdonald processes. Probab. Theory Relat. Fields, 1-2, 225-400 (2014) ·Zbl 1291.82077
[9]Burda, Z.; Janik, R. A.; Waclaw, B., Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E (2010)
[10]Burda, Z.; Jarosz, A.; Livan, G.; Nowak, M. A.; Swiech, A., Eigenvalues and singular values of products of rectangular Gaussian random matrices. Phys. Rev. E (2010)
[11]Cheong, G.; Kaplan, N., Generalizations of results of Friedman and Washington on cokernels of random \(p\)-adic matrices. J. Algebra, 636-663 (2022) ·Zbl 1490.15051
[12]Cheong, G.; Liang, Y.; Strand, M., The distribution of the cokernel of a polynomial push-forward of a random \(\mathbb{Z}_p\)-matrix with a fixed residue class modulo \(p (2022)\), arXiv preprint
[13]Cohen, H.; Lenstra, H. W., Heuristics on class groups of number fields, 331-762
[14]Crisanti, A.; Paladin, G.; Vulpiani, A., Products of Random Matrices in Statistical Physics. Springer Series in Solid-State Sciences (1993), Springer-Verlag: Springer-Verlag Berlin, With a foreword by Giorgio Parisi ·Zbl 0784.58003
[15]Delaunay, C.; Jouhet, F., \(p\)-torsion points in finite abelian groups and combinatorial identities. Adv. Math., 13-45 (2014) ·Zbl 1286.11087
[16]Friedman, E.; Washington, L. C., On the distribution of divisor class groups of curves over a finite field, 227-239 ·Zbl 0693.12013
[17]Fulman, J., A probabilistic approach toward conjugacy classes in the finite general linear and unitary groups. J. Algebra, 2, 557-590 (1999) ·Zbl 0980.20036
[18]Fulman, J., Cohen-Lenstra heuristics and random matrix theory over finite fields. J. Group Theory, 4, 619-648 (2014) ·Zbl 1336.60013
[19]Fulman, J., Hall-Littlewood polynomials and Cohen-Lenstra heuristics for Jacobians of random graphs. Ann. Comb., 1, 115-124 (2016) ·Zbl 1332.05127
[20]Fulman, J.; Goldstein, L., Stein’s method and the rank distribution of random matrices over finite fields. Ann. Probab., 3, 1274-1314 (2015) ·Zbl 1388.60024
[21]Fulman, J.; Kaplan, N., Random partitions and Cohen-Lenstra heuristics. Ann. Comb., 295-315 (2019) ·Zbl 1415.15034
[22]Furstenberg, H.; Kesten, H., Products of random matrices. Ann. Math. Stat., 2, 457-469 (1960) ·Zbl 0137.35501
[23]Gerth, F., Limit probabilities for coranks of matrices over \(G F(q)\). Linear Multilinear Algebra, 1, 79-93 (1986) ·Zbl 0609.15006
[24]Ginibre, J., Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys., 440-449 (1965) ·Zbl 0127.39304
[25]Gorin, V.; Sun, Y., Gaussian fluctuations for products of random matrices. Am. J. Math., 2, 287-393 (2022) ·Zbl 1498.60032
[26]Götze, F.; Tikhomirov, A., Rate of convergence in probability to the Marchenko-Pastur law. Bernoulli, 3, 503-548 (2004) ·Zbl 1049.60018
[27]Götze, F.; Tikhomirov, A., On the asymptotic spectrum of products of independent random matrices ·Zbl 1517.60011
[28]Götze, F.; Tikhomirov, A., The circular law for random matrices. Ann. Probab., 4, 1444-1491 (2010) ·Zbl 1203.60010
[29]Hanin, B.; Nica, M., Products of many large random matrices and gradients in deep neural networks. Commun. Math. Phys., 1, 287-322 (2020) ·Zbl 1446.60007
[30]Kieburg, M.; Kuijlaars, A. B.J.; Stivigny, D., Singular value statistics of matrix products with truncated unitary matrices. Int. Math. Res. Not., 11, 3392-3424 (2016) ·Zbl 1404.60013
[31]Kuijlaars, A. B.J.; Stivigny, D., Singular values of products of random matrices and polynomial ensembles. Random Matrices: Theory Appl., 03 (2014) ·Zbl 1303.15045
[32]Kuijlaars, A. B.J.; Zhang, L., Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits. Commun. Math. Phys., 759-781 (2014) ·Zbl 1303.15046
[33]Lee, J., Joint distribution of the cokernels of random \(p\)-adic matrices. Forum Math., 4, 1005-1020 (2023) ·Zbl 1522.15030
[34]Lee, J., Mixed moments and the joint distribution of random groups (2022), arXiv preprint
[35]Lengler, J., The Cohen-Lenstra heuristic: methodology and results. J. Algebra, 10, 2960-2976 (2010) ·Zbl 1213.11167
[36]Liu, D.-Z.; Wang, D.; Zhang, L., Bulk and soft-edge universality for singular values of products of Ginibre random matrices. Ann. Inst. Henri Poincaré Probab. Stat., 4, 1734-1762 (2016) ·Zbl 1384.60027
[37]MacWilliams, J., Orthogonal matrices over finite fields. Am. Math. Mon., 2, 152-164 (February 1969) ·Zbl 0186.33702
[38]Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), Oxford University Press: Oxford University Press New York ·Zbl 0899.05068
[39]Maples, K., Singularity of random matrices over finite fields, preprint
[40]Marcenko, V. A.; Pastur, L. A., Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.), 114, 507-536 (1967) ·Zbl 0152.16101
[41]Matveev, K., Macdonald-positive specializations of the algebra of symmetric functions: proof of the Kerov conjecture. Ann. Math. (2), 1, 277-316 (2019) ·Zbl 1404.05214
[42]Mehta, M. L., Random Matrices and the Statistical Theory of Energy Levels (1967), Academic Press: Academic Press New York, NY ·Zbl 0925.60011
[43]Muller, R. R., IEEE Trans. Inf. Theory, 2086 (2002)
[44]Nguyen, H., Asymptotic Lyapunov exponents for large random matrices. Ann. Appl. Probab., 6, 3672-3705 (2017) ·Zbl 1386.60027
[45]Nguyen, H.; Paquette, E., Surjectivity of near square matrices. Comb. Probab. Comput., 2, 267-292 (2020) ·Zbl 1467.60011
[46]Nguyen, H.; Wood, M. M., Random integral matrices: universality of surjectivity and the cokernel. Invent. Math., 1, 1-76 (2022) ·Zbl 1485.15042
[47]Nguyen, H.; Wood, M. M., Local and global statistics of random matrix cokernels, arXiv preprint
[48]O’Rourke, S.; Soshnikov, A., Products of independent non-Hermitian random matrices. Electron. J. Probab., 2219-2245 (2011) ·Zbl 1244.60011
[49]O’Rourke, S.; Renfrew, D.; Soshnikov, A.; Vu, V., Products of independent elliptic random matrices. J. Stat. Phys., 1, 89-119 (2015) ·Zbl 1360.60021
[50]Pan, G.; Zhou, W., Circular law, extreme singular values and potential theory. J. Multivar. Anal., 645-656 (2010) ·Zbl 1203.60011
[51]Pastur, L. A., Spectra of random selfadjoint operators. Russ. Math. Surv., 1-67 (1973) ·Zbl 0277.60049
[52]Speyer, D., (Short) exact sequences with no commutative diagram between them, URL (version: 2014-02-19)
[53]Tao, T.; Vu, V., Random matrices: universality of ESDs and the circular law. Ann. Probab., 5, 2023-2065 (2010) ·Zbl 1203.15025
[54]Van Peski, R., \(q\)-TASEP with position-dependent slowing. Electron. J. Probab., 1-35 (2022) ·Zbl 1509.60178
[55]Van Peski, R., Limits and fluctuations of p-adic random matrix products. Sel. Math., 5, 1-71 (2021) ·Zbl 1476.15056
[56]Van Peski, R., Hall-Littlewood polynomials, boundaries, and \(p\)-adic random matrices. Int. Math. Res. Not., 13, 11217-11275 (2022) ·Zbl 1518.60012
[57]Van Peski, R., Local limits in \(p\)-adic random matrix theory, arXiv preprint ·Zbl 1548.60036
[58]Wachter, K. W., The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Probab., 1-18 (1978) ·Zbl 0374.60039
[59]Wood, M. M., Asymptotics for number fields and class groups, 291-339 ·Zbl 1411.11111
[60]Wood, M. M., The distribution of sandpile groups of random graphs. J. Am. Math. Soc., 915-958 (2017) ·Zbl 1366.05098
[61]Wood, M. M., Random integral matrices and the Cohen-Lenstra heuristics. Am. J. Math., 2, 383-398 (2019) ·Zbl 1446.11170
[62]Wood, M. M., Probability Theory for Random Groups Arising in Number Theory. Lecture Notes for ICM (2022)
[63]Yin, Y. Q., Limiting spectral distribution for a class of random matrices. J. Multivar. Anal., 50-68 (1968) ·Zbl 0614.62060
[64]Zyczkowski, K.; Penson, K. A.; Nechita, I.; Collins, B., Generating random density matrices. J. Math. Phys. (2011) ·Zbl 1317.81041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp