[1] | Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman. Distributed approximate maximum matching in the congest model. In 32nd International Symposium on Distributed Computing (DISC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. ·Zbl 1497.68558 |
[2] | Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-optimal approximate shortest paths and transshipment in distributed and streaming models. In DISC, volume 91, pages 7:1-7:16, 2017. ·Zbl 1515.68357 |
[3] | Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Distributed weighted min-cut in nearly-optimal time. CoRR, abs/2004.09129, 2020. |
[4] | Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of distributed approximation. In STOC, pages 363-372, 2011. ·Zbl 1288.68110 |
[5] | Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Thatchaphol Saranurak. Distributed edge connectivity in sublinear time. In STOC, pages 343-354. ACM, 2019. ·Zbl 1433.68598 |
[6] | Michal Dory. Distributed approximation of minimum k-edge-connected spanning subgraphs. In PODC, pages 149-158. ACM, 2018. ·Zbl 1428.68370 |
[7] | Peter Elias, Amiel Feinstein, and Claude E. Shannon. A note on the maximum flow through a network. IRE Trans. Information Theory, 2(4):117-119, 1956. |
[8] | Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pandurangan. Can quantum communication speed up distributed computation? In PODC, pages 166-175. ACM, 2014. ·Zbl 1321.68072 |
[9] | Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the distributed minimum spanning tree problem. SIAM J. Comput., 36(2):433-456, 2006. ·Zbl 1116.05077 |
[10] | L. R. Ford and D. R. Fulkerson. Maximal Flow Through a Network, pages 243-248. Birkhäuser Boston, Boston, MA, 1987. |
[11] | Barbara Geissmann and Lukas Gianinazzi. Parallel minimum cuts in near-linear work and low depth. In SPAA, pages 1-11, 2018. |
[12] | Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II: low-congestion shortcuts, mst, and min-cut. In SODA, pages 202-219. SIAM, 2016. ·Zbl 1410.68383 |
[13] | Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In Proceedings of the 27th DISC, pages 1-15, 2013. ·Zbl 1435.68379 |
[14] | Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-Shamir. Near-optimal distributed maximum flow: Extended abstract. In PODC, pages 81-90, 2015. ·Zbl 1333.68273 |
[15] | Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m \(log^2\) n) time. In ICALP 2020, pages 57:1-57:15, 2020. |
[16] | Mohsen Ghaffari and Krzysztof Nowicki. Congested clique algorithms for the minimum cut problem. In PODC, pages 357-366. ACM, 2018. ·Zbl 1428.68380 |
[17] | Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge connectivity via random 2-out contractions. In SODA, pages 1260-1279. SIAM, 2020. ·Zbl 07304100 |
[18] | Mohsen Ghaffari and Merav Parter. Near-optimal distributed algorithms for fault-tolerant tree structures. In SPAA, pages 387-396, 2016. |
[19] | Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-tight distributed algorithm for approximating single-source shortest paths. In STOC, pages 489-498, 2016. ·Zbl 1375.68218 |
[20] | David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46-76, 2000. ·Zbl 1094.68613 |
[21] | Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed minimum-weight spanning tree verification. Theory Comput. Syst., 53(2):318-340, 2013. ·Zbl 1286.68317 |
[22] | Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: Sequential, cut-query and streaming algorithms. In STOC, 2020. ·Zbl 07298265 |
[23] | Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In Symposium on Theory of Computing (STOC), pages 565-573, 2014. ·Zbl 1315.05136 |
[24] | Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms. In DISC, pages 439-453, 2014. ·Zbl 1435.68381 |
[25] | Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. 2019. |
[26] | David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427-1442, 2000. ·Zbl 0973.05074 |
[27] | David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle space sampling. ACM Trans. Algorithms, 7(4):46:1-46:30, 2011. ·Zbl 1295.68205 |
[28] | Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91-127, 2007. Announced at STOC’01. ·Zbl 1135.68024 |
[29] | Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman. Distributed approximate maximum matching in the congest model. In 32nd International Symposium on Distributed Computing (DISC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. ·Zbl 1497.68558 |
[30] | Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-optimal approximate shortest paths and transshipment in distributed and streaming models. In DISC, volume 91, pages 7:1-7:16, 2017. ·Zbl 1515.68357 |
[31] | Michal Dory, Yuval Efron, Sagnik Mukhopadhyay, and Danupon Nanongkai. Distributed weighted min-cut in nearly-optimal time. CoRR, abs/2004.09129, 2020. |
[32] | Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of distributed approximation. In STOC, pages 363-372, 2011. ·Zbl 1288.68110 |
[33] | Mohit Daga, Monika Henzinger, Danupon Nanongkai, and Thatchaphol Saranurak. Distributed edge connectivity in sublinear time. In STOC, pages 343-354. ACM, 2019. ·Zbl 1433.68598 |
[34] | Michal Dory. Distributed approximation of minimum k-edge-connected spanning subgraphs. In PODC, pages 149-158. ACM, 2018. ·Zbl 1428.68370 |
[35] | Peter Elias, Amiel Feinstein, and Claude E. Shannon. A note on the maximum flow through a network. IRE Trans. Information Theory, 2(4):117-119, 1956. |
[36] | Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pandurangan. Can quantum communication speed up distributed computation? In PODC, pages 166-175. ACM, 2014. ·Zbl 1321.68072 |
[37] | Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the distributed minimum spanning tree problem. SIAM J. Comput., 36(2):433-456, 2006. ·Zbl 1116.05077 |
[38] | L. R. Ford and D. R. Fulkerson. Maximal Flow Through a Network, pages 243-248. Birkhäuser Boston, Boston, MA, 1987. |
[39] | Barbara Geissmann and Lukas Gianinazzi. Parallel minimum cuts in near-linear work and low depth. In SPAA, pages 1-11, 2018. |
[40] | Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II: low-congestion shortcuts, mst, and min-cut. In SODA, pages 202-219. SIAM, 2016. ·Zbl 1410.68383 |
[41] | Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In Proceedings of the 27th DISC, pages 1-15, 2013. ·Zbl 1435.68379 |
[42] | Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-Shamir. Near-optimal distributed maximum flow: Extended abstract. In PODC, pages 81-90, 2015. ·Zbl 1333.68273 |
[43] | Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m \(log^2\) n) time. In ICALP 2020, pages 57:1-57:15, 2020. |
[44] | Mohsen Ghaffari and Krzysztof Nowicki. Congested clique algorithms for the minimum cut problem. In PODC, pages 357-366. ACM, 2018. ·Zbl 1428.68380 |
[45] | Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge connectivity via random 2-out contractions. In SODA, pages 1260-1279. SIAM, 2020. ·Zbl 07304100 |
[46] | Mohsen Ghaffari and Merav Parter. Near-optimal distributed algorithms for fault-tolerant tree structures. In SPAA, pages 387-396, 2016. |
[47] | Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-tight distributed algorithm for approximating single-source shortest paths. In STOC, pages 489-498, 2016. ·Zbl 1375.68218 |
[48] | David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46-76, 2000. ·Zbl 1094.68613 |
[49] | Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed minimum-weight spanning tree verification. Theory Comput. Syst., 53(2):318-340, 2013. ·Zbl 1286.68317 |
[50] | Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: Sequential, cut-query and streaming algorithms. In STOC, 2020. ·Zbl 07298265 |
[51] | Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In Symposium on Theory of Computing (STOC), pages 565-573, 2014. ·Zbl 1315.05136 |
[52] | Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms. In DISC, pages 439-453, 2014. ·Zbl 1435.68381 |
[53] | Merav Parter. Small cuts and connectivity certificates: A fault tolerant approach. 2019. |
[54] | David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427-1442, 2000. ·Zbl 0973.05074 |
[55] | David Pritchard and Ramakrishna Thurimella. Fast computation of small cuts via cycle space sampling. ACM Trans. Algorithms, 7(4):46:1-46:30, 2011. ·Zbl 1295.68205 |
[56] | Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91-127, 2007. Announced at STOC’01. ·Zbl 1135.68024 |