Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Applications of contravariantly finite subcategories.(English)Zbl 0774.16006

Let \(\Lambda\) be an Artin algebra, and let \({\mathcal P}^ \infty(\Lambda)\) be the category of finitely generated left \(\Lambda\)-modules that are of finite projective dimension. The authors first study what it means for \({\mathcal P}^ \infty(\Lambda)\) to be contravariantly finite in the category of all finitely generated left \(\Lambda\)-modules. A rich supply of examples can be obtained where \({\mathcal P}^ \infty(\Lambda)\) is contravariantly finite, and there are also many examples where it is not. In the case where \({\mathcal P}^ \infty(\Lambda)\) is contravariantly finite, there is a bound on the projective dimensions of modules of finite projective dimension. Also, there are modules \(A_ 1,\dots,A_ n\) in \({\mathcal P}^ \infty(\Lambda)\) such that the objects of \({\mathcal P}^ \infty(\Lambda)\) are just the direct summands of modules having filtrations with the associated quotients among the \(A_ i\).
If \(T\) is a module with \(\text{Ext}^ i_ \Lambda(T,T)=0\) for all \(i>0\), one constructs the category \(^ \perp T\) of modules \(X\) with \(\text{Ext}^ i_ \Lambda(X,T)=0\) for all \(i>0\). It is shown that \(T\) is an injective cotilting module if and only if \(^ \perp T\) is contravariantly finite and every \(\Lambda\)-module has a finite resolution by modules in \(^ \perp T\). In fact, this construction exhausts the contravariantly finite subcategories with this resolution property. Finally, it is shown how analogs of the Gorenstein and Cohen-Macaulay properties of commuative rings can be defined for Artin algebras in terms of special types of cotilting modules.

MSC:

16G10 Representations of associative Artinian rings
16D90 Module categories in associative algebras
16G50 Cohen-Macaulay modules in associative algebras
16E10 Homological dimension in associative algebras

Cite

References:

[1]Auslander, M., Coherent functors, (Proceedings of the Conference on Categorical Algebra. Proceedings of the Conference on Categorical Algebra, La Jolla (1965), Springer-Verlag: Springer-Verlag New York), 189-231 ·Zbl 0192.10902
[2]Auslander, M.; Bridger, M., Stable module theory, Mem. Amer. Math. Soc., 94 (1969) ·Zbl 0204.36402
[3]Auslander, M.; Buchweitz, R. O., Maximal Cohen-Macaulay approximations, Soc. Math. France, 38, 5-37 (1989) ·Zbl 0697.13005
[4]M. Auslander and E. L. Green;M. Auslander and E. L. Green ·Zbl 0804.16030
[5]Auslander, M.; Reiten, I., Stable equivalence of artin algebras, (Proc. Conf. on Orders Group Rings and Related Topics. Proc. Conf. on Orders Group Rings and Related Topics, Lecture Notes in Mathematics, Vol. 353 (1972), Springer-Verlag: Springer-Verlag New York/Berlin), 8-71 ·Zbl 0276.16020
[6]Auslander, M.; Reiten, I., On a generalized version of the Nakayama conjecture, (Proc. Amer. Math. Soc., 52 (1972)), 69-74 ·Zbl 0337.16004
[7]Auslander, M.; Reiten, I., Representation theory of artin algebras III, Almost split sequences, Comm. Algebra, 3, 239-294 (1975) ·Zbl 0331.16027
[8]Auslander, M.; Smalø, S. O., Preprojective modules over artin algebras, J. Algebra, 66, 61-122 (1980) ·Zbl 0477.16013
[9]Addendum. Addendum, J. Algebra, 71, 592-594 (1981) ·Zbl 0474.16022
[10]Bongartz, K., Tilted algebras, (Proc. ICRAIII. Proc. ICRAIII, Puebla, 1980. Proc. ICRAIII. Proc. ICRAIII, Puebla, 1980, Lecture Notes in Mathematics, Vol. 903 (1981), Springer-Verlag: Springer-Verlag New York/Berlin), 26-38 ·Zbl 0478.16025
[11]Happel, D., On the derived category of a finite dimensional algebra, Comm. Math. Helv., 62, No. 3, 339-389 (1987) ·Zbl 0626.16008
[12]Happel, D.; Ringel, C. M., Tilted algebras, Trans. Amer. Math. Soc., 274, 399-443 (1982) ·Zbl 0503.16024
[13]K. Igusa, S. O. Smalø, and G. TodorovProc. Amer. Math. Soc.;K. Igusa, S. O. Smalø, and G. TodorovProc. Amer. Math. Soc. ·Zbl 0696.16024
[14]Jensen, C. U.; Lenzing, H., Homological dimension and representation type of algebras under base field extension, Manuscripta Math., 39, 1-13 (1982) ·Zbl 0498.16023
[15]Miayshita, T., Tilting modules of finite projective dimension, Math. Z., 193, 113-146 (1986) ·Zbl 0578.16015
[16]J. Rickart and A. Scofield;J. Rickart and A. Scofield
[17]Sharp, R. Y., Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings, Proc. London Math. Soc., 25, 3, 303-328 (1972) ·Zbl 0244.13015
[18]S. O. SmaløProc. Amer. Math. Soc.;S. O. SmaløProc. Amer. Math. Soc. ·Zbl 0724.16003
[19]Wakamatsu, T., On modules with trivial selfextensions, J. Algebra, 114, 106-114 (1988) ·Zbl 0646.16025
[20]T. Wakamatsu;T. Wakamatsu ·Zbl 0726.16009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp