[1] | Arumugadevi, S.; Seenivasagam, V., Color image segmentation using feedforward neural networks with FCM, International Journal of Automation and Computing, 13, 5, 491-500 (2016) ·doi:10.1007/s11633-016-0975-5 |
[2] | Cabanes, G.; Bennani, Y.; Destenay, R.; Hardy, A., A new topological clustering algorithm for interval data, Pattern Recognition, 46, 11, 3030-9 (2013) ·doi:10.1016/j.patcog.2013.03.023 |
[3] | Chen, C.; Quadriato, N., Clustering high dimensional categorical data via topographical features, JMLR workshop and conference proceedings (JMLR), 2732-2741 (2016) |
[4] | Chen, J. H.; Chang, Y. C.; Hung, W. L., A robust automatic clustering algorithm for probability density functions with application to categorizing color images, Communications in Statistics-Simulation and Computation, 47, 7, 1532-4141 (2018) ·Zbl 07550091 |
[5] | Chen, J. C.; Hung, W. L., An automatic clustering algorithm for probability density functions, Journal of Statistical Computation and Simulation, 85, 15, 1-17 (2016) |
[6] | De-Carvalho, F. D.; Pimented, J. T.; Bezerra, L. T. X., Clustering of symbolic interval data based on a single adaptive L_1 distance, International Joint Conference on Neural Networks, 224-229 (2007) |
[7] | Deref, Q.; Fan, W. A., Information-theoretic feature selection with discrete k-median clustering, Annals of Operations Research, 263, 1, 93-118 (2018) ·Zbl 1478.62176 |
[8] | Eleyan, A.; Demirel, H., Co-occurrence matrix and its statistical features as a new approach for face recognition, Turkish Journal of Electrical Engineering and Computer Sciences, 19, 1, 97-107 (2011) |
[9] | Hajjar, C.; Hamdan, H., Self-organizing map based on Hausdorff distance for interval valued data, 2011 IEEE International Conference on Systems, Man and Cybernetics, 1747-1752 (2011) |
[10] | Hajjar, C.; Hamdan, H., Interval data clustering using self-organizing maps based on adaptive Mahalanobis distances, Neural Networks : The Official Journal of the International Neural Network Society, 46, 3, 124-32 (2013) ·Zbl 1296.68129 ·doi:10.1016/j.neunet.2013.04.009 |
[11] | Hubert, L.; Arabie, P., Comparing partitions, Journal of Classification, 2, 1, 193-218 (1985) ·doi:10.1007/BF01908075 |
[12] | Hung, W.; Yang, J.; Shen, K. F., Self-updating clustering algorithm for interval-valued data, In IEEE International Conference on Fuzzy Systems:, 1494-1500 (2016) |
[13] | Izakian, Z.; Saadi-Mesgari, M.; Abraham, A., Automated clustering of trajectory data using a particle swarm optimization, Environment and Urban Systems, 55, 2, 55-65 (2016) ·doi:10.1016/j.compenvurbsys.2015.10.009 |
[14] | Jeng, J. T.; Chen, C. M.; Chang, S. C.; Chuang, C. C., IPFCM clustering algorithm under Euclidean and Hausdorff distance measure for symbolic interval data, International Journal of Fuzzy Systems, 21, 7, 2102-19 (2019) ·doi:10.1007/s40815-019-00707-w |
[15] | Kabir, S.; Wagner, C.; Havens, T. C.; Anderson, D. T.; Aickelin, U., Novel similarity measure for interval-valued data based on overlapping ratio, IEEE International Conference on Fuzzy Systems, 16-31 (2017) |
[16] | Kao, C. H.; Nakano, J.; Shieh, S. H.; Tien, Y. Y.; Wu, H. M.; Yang, C. K.; Chen, C. H., Exploratory data analysis of interval-valued symbolic data with matrix visualization, Computational Statistics & Data Analysis, 79, 3, 14-29 (2014) ·Zbl 1506.62090 ·doi:10.1016/j.csda.2014.04.012 |
[17] | Li, D. J.; Li, Y. Y.; Li, J. X.; Fu, Y., Gesture recognition based on BP neural network improved by chaotic genetic algorithm, International Journal of Automation and Computing, 15, 3, 267-76 (2018) ·doi:10.1007/s11633-017-1107-6 |
[18] | Masson, M.-H.; Denoeux, T., Clustering interval-valued proximity data using belief functions, Pattern Recognition Letters, 25, 2, 163-71 (2004) ·doi:10.1016/j.patrec.2003.09.008 |
[19] | Montanari, A.; Calo, D. G., Model-based clustering of probability density functions, Advances in Data Analysis and Classification, 7, 3, 301-19 (2013) ·Zbl 1273.62140 ·doi:10.1007/s11634-013-0140-8 |
[20] | Peng, W.; Li, L., Interval data clustering with applications, 2006 IEEE international Conference on Tools with Artificial Intelligence, 355-362 (2006) |
[21] | Ren, Y.; Liu, Y. H.; Rong, J. R.; Dew, R., Clustering interval-valued data using an overlapped interval divergence, Proceedings of the Eighth Australasian Data Mining Conference, Vol, 101, 35-42 (2009) |
[22] | Sara, I. R. R.; Francisco, A. T. C., A new fuzzy clustering algorithm for interval-valued data based on City-block distance, IEEE International Conference on Fuzzy Systems, 1-6 (2019) ·doi:10.1109/FUZZ |
[23] | Sato-Ilic, M., Symbolic clustering with interval-valued data, Procedia Computer Science, 6, 2, 358-63 (2011) ·doi:10.1016/j.procs.2011.08.066 |
[24] | Setia, L.; Teynor, A.; Halawani, A.; Burkhardt, H., Image classification using cluster co-occurrence matrices of local relational features, Proceedings of the 8th ACM SIGMM International Workshop on Multimedia Information Retrieval, 6, 173-182 (2006) |
[25] | Souza, M. C. R.; Carvalho, F. D. A., Neural Information Processing, Clustering of interval-valued data using adaptive squared Euclidean distances, 775-80 (2004) |
[26] | Tai, V. V., L^1-distance and classification problem by Bayesian method, Journal of Applied Statistics, 44, 3, 385-401 (2017) ·Zbl 1516.62643 |
[27] | Tai, V. V.; Thao, N. T., Similar coefficient for cluster of probability density functions, Journal of Statistical Computation and Simulation, 47, 8, 1792-811 (2018) ·Zbl 1392.62193 |
[28] | Tai, V. V.; Thao, N. T., Similar coefficient of cluster for discrete elements, Sankhya B, 80, 1, 19-36 (2018) ·Zbl 1395.62176 |
[29] | Tai, V. V.; Pham-Gia, T., Clustering probability distributions, Journal of Applied Statistics, 37, 11, 1891-910 (2010) ·Zbl 1511.62142 ·doi:10.1080/02664760903186049 |
[30] | Tai, V. V.; Ha, C. N.; Thao, N. T., Clustering for probability density functions based on genetic algorithm, 1st International Conference on Applied Mathematics in Engineering and Reliability, 51-57 (2016) |
[31] | Tai, V. V.; Trung, N. T.; Trung, V. D.; Vinh, H. H.; Thao, N. T., Modified genetic algorithm-based clustering for probability density functions, Journal of Statistical Computation and Simulation, 87, 10, 1964-79 (2017) ·Zbl 07192043 |
[32] | Thao, N. T.; Tai, V. V., Fuzzy clustering of probability density functions, Journal of Applied Statistics, 44, 4, 583-601 (2017) ·Zbl 1516.62507 |
[33] | Wang, J. S.; Ren, X. D., GLCM based extraction of flame image texture and KPCA-GLVQ recognition method for rotary combustion working conditions, International Journal of Automation and Computing, 11, 1, 72-7 (2014) ·doi:10.1007/s11633-014-0767-8 |
[34] | Wang, K.; Long, X. X.; Li, R. F.; Zhao, L. J., A discriminative algorithm for indoor place recognition based on clustering of features and images, Journal of Applied Statistics, 14, 4, 407-19 (2017) |