Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations.(English)Zbl 0771.35047

Let \(M\) be a compact manifold of dimension \(n\). The main result is that for \(f\in M_ r^ n(M)\cap\mathring M_ 1^ n(M)\), \(r>1\), the Navier- Stokes equation on \(M\) with the initial data \(f\) has a unique solution \[u\in C([0,T], M_ r^ n(M))\cap C^ \infty((0,T]\times M), \qquad t^{2/n}u\in C([0,T]\times M)\] for some \(T>0\), where \(M_ q^ p(M)\) is the Morrey space on \(M\) which is the natural analogue of \(M_ q^ p(\mathbb{R}^ n)\) consisting of functions such that \[R^{-n}\int_{B_ R}| f(x)|^ q dx\leq CR^{-nq/p}\] for any ball \(B_ R\) of radius \(R\leq 1\) and \(\mathring M_ q^ p(\mathbb{R}^ n)\) is the set of all \(f\in M_ q^ p(\mathbb{R}^ n)\) for which the left side of the above inequality is \(o(R^{-nq/p})\) as \(R\to 0\). This theorem is an extension of the results ofT. Kato [Math. Z. 187, 471-480 (1984;Zbl 0537.35065)], andY. Giga andT. Miyakawa [Commun. Partial Differ. Equations 14, No. 5, 577-618 (1989;Zbl 0681.35072)]. It was announced that T. Kato recently obtained results similar to those of this paper, especially in the context of viscous flow one \(\mathbb{R}^ n\).

MSC:

35Q30 Navier-Stokes equations
58D25 Equations in function spaces; evolution equations
46N20 Applications of functional analysis to differential and integral equations
34G20 Nonlinear differential equations in abstract spaces

Cite

References:

[1]DOI: 10.1007/BF01212349 ·Zbl 0573.76029 ·doi:10.1007/BF01212349
[2]DOI: 10.1016/0362-546X(85)90039-2 ·Zbl 0621.76027 ·doi:10.1016/0362-546X(85)90039-2
[3]Bony J., Ann. Sci. Ecole Norm. Sup. 14 pp 209– (1981)
[4]DOI: 10.1080/03605308808820568 ·Zbl 0659.35115 ·doi:10.1080/03605308808820568
[5]DOI: 10.1002/cpa.3160350604 ·Zbl 0509.35067 ·doi:10.1002/cpa.3160350604
[6]J. Y. Chemin Remarques sur l’existence globale pour le systeme de Navier-Stokes incompressible Preprint
[7]Cotter G., 1 303, in: C. R. Acad. Sci. pp 105– (1986)
[8]DOI: 10.1002/cpa.3160400304 ·Zbl 0850.76730 ·doi:10.1002/cpa.3160400304
[9]DOI: 10.1080/03605308408820341 ·Zbl 0548.76005 ·doi:10.1080/03605308408820341
[10]DOI: 10.2307/1970699 ·Zbl 0211.57401 ·doi:10.2307/1970699
[11]DOI: 10.1007/BF00281533 ·Zbl 0254.35097 ·doi:10.1007/BF00281533
[12]J. Y.Chemin Remarques sur l’existence globale pour le systeme de Navier-Stokes incompressible Preprint p. Federbush Navier and Stokes meet the wavelet Preprint
[13]DOI: 10.1007/BF02392215 ·Zbl 0257.46078 ·doi:10.1007/BF02392215
[14]DOI: 10.1007/BF00276188 ·Zbl 0126.42301 ·doi:10.1007/BF00276188
[15]DOI: 10.1080/03605308908820621 ·Zbl 0681.35072 ·doi:10.1080/03605308908820621
[16]DOI: 10.1007/BF00281355 ·Zbl 0666.76052 ·doi:10.1007/BF00281355
[17]Hörmander L., Lectures Notes (1986)
[18]DOI: 10.1070/SM1991v069n02ABEH002116 ·Zbl 0724.35088 ·doi:10.1070/SM1991v069n02ABEH002116
[19]DOI: 10.1007/BF01174182 ·Zbl 0545.35073 ·doi:10.1007/BF01174182
[20]J. Y. Chemin Remarques sur l’existence globale pour le systeme de Navier-Stokes incompressible Preprint p. Federbush Navier and Stokes meet the wavelet Preprint T. kato Strong solutions of the Navier-Stokes equation in Morrey spaces Preprint
[21]Majda A., Appl. Math. Sci.
[22]Meyer Y., Rend. del Circolo mat. di palermo pp 1– (1981)
[23]DOI: 10.1080/03605307708820054 ·Zbl 0397.35071 ·doi:10.1080/03605307708820054
[24]DOI: 10.1007/BF02414340 ·Zbl 0149.09102 ·doi:10.1007/BF02414340
[25]DOI: 10.1016/0022-1236(69)90022-6 ·Zbl 0175.42602 ·doi:10.1016/0022-1236(69)90022-6
[26]Serrin J., Encly. of Physics 8 pp 125– (1959)
[27]Stein E., Graduate Lecture Notes (1972)
[28]Taylor, M. 1981. ”Pseudodifferential Operators”. Princeton Univ. Press. ·Zbl 0453.47026
[29]DOI: 10.1007/978-1-4612-0431-2 ·doi:10.1007/978-1-4612-0431-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp