Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Modules over regular algebras of dimension 3.(English)Zbl 0763.14001

A finitely generated graded algebra \(A=k+A_ 1+A_ 2+\cdots\), where \(k\) is a field, is said to beregular if \(A\) has finite global dimension and polynomial growth and is Gorenstein. In an earlier work [in The Grothendieck Festschrift, Vol. I, Prog. Math. 86, 33-85 (1990;Zbl 0744.14024)] the authors had classified regular algebras of global dimension 3 which are standard (i.e. generated in degree 1) by establishing a correspondence between such algebras and “regular” triples \((E,\sigma,L)\), with \(\sigma\) an automorphism of the scheme \(E\), of one of the following four types:
(1a) \(E\) is a cubic divisor in \(\mathbb{P}^ 2\) and \(L={\mathcal O}_ E(1)\),
(1b) \(E\) is a divisor of bidegree (2,2) in \(\mathbb{P}^ 1\times\mathbb{P}^ 1\) and \(L=pr^*_ 1({\mathcal O}_{\mathbb{P}^ 1}(1))\),
(2a) \(E=\mathbb{P}^ 2\) and \(L\cong{\mathcal O}_ E(1)\).
(2b) \(E=\mathbb{P}^ 1\times\mathbb{P}^ 1\) and \(L\cong pr^*_ 1({\mathcal O}_{\mathbb{P}^ 1}(1))\).
The regularity of the triple means that \(L^{(\sigma-1)(\sigma^ j- 1)}\cong{\mathcal O}_ E\) with \(j=1\) in case (a) and \(j=2\) in case (b).
One of the main results proved in the present paper is theorem II: The regular algebra \(A\) is a finite module over its centre if and only if the automorphism \(\sigma\) is of finite order.
Given the triple \((E,\sigma,L)\) the corresponding regular algebra \(A\) is obtained via an intermediary graded algebra, namely \(B=\sum_{n\geq 0}H^ 0(E,L\otimes L^ \sigma\otimes\cdots\otimes L^{\sigma^{n- 1}})\). — The algebras \(A\) and \(B\) are related by \(B\cong A/gA\) with \(g\) homogeneous. Since \(B\) has an explicit description, theorem II is easy to prove for \(B\). In order to deduce the corresponding result for \(A\), the authors introduce the \(\mathbb{Z}\)-graded ring \(\Lambda=A[g^{-1}]\). In analogy with the commutative case, one can think of the non-commutative affine scheme \(\text{Spec} \Lambda_ 0\) as the “open complement” of the non-commutative \(\text{Proj}(B)\) in \(\text{Proj}(A)\). The structures of \(A\) and \(\Lambda_ 0\) are closely related. On the structure of \(\Lambda_ 0\) the authors have the following result (which is used in proving theorem II):
Theorem I. Let \(s\) be the order of the \(\sigma\)-orbit of the class of \(L\) in \(\text{Pic}(E)\). If \(s<\infty\) then \(\Lambda_ 0\) is an Azumaya algebra of rank \(s^ 2\) over its centre, while if \(s=\infty\) then \(\Lambda_ 0\) is a simple ring.
Apoint module over \(A\) is a graded right \(A\)-module \(N\) such that \(N_ 0=k\), \(N_ 0\) generates \(N\) and \(\dim_ kN_ i=1\) for all \(i\geq 0\). It is shown that under the correspondence \(A\leftrightarrow(E,\sigma,L)\) the points of \(E\) parametrize the point modules over \(A\) and that the structure of these modules is related nicely to the geometry of \((E,\sigma,L)\). It is the study of this relationship that yields a proof of theorems I and II. The authors also describe a process of twisting a graded algebra by an automorphism to obtain a new algebra of the same dimension, and they use this to determine those regular algebras which correspond to non-reduced divisors \(E\) by showing that they are twists of a few special types. The following theorem is also proved: A regular noetherian algebra of global dimension at most 4 is a domain.
Reviewer: B.Singh (Bombay)

MSC:

14A22 Noncommutative algebraic geometry
11R54 Other algebras and orders, and their zeta and \(L\)-functions
16W50 Graded rings and modules (associative rings and algebras)
14J30 \(3\)-folds
16E10 Homological dimension in associative algebras

Citations:

Zbl 0744.14024

Cite

References:

[1][AmSm] Amitsur, S.A., Small, L.W.: Prime ideals in P.I. rings. J. Algebra62, 358-383 (1980) ·Zbl 0424.16009 ·doi:10.1016/0021-8693(80)90188-X
[2][ArSch] Artin, M., Schelter, W.: Graded algebras of global dimension 3. Adv. Math.66, 171-216 (1987) ·Zbl 0633.16001 ·doi:10.1016/0001-8708(87)90034-X
[3][ATV] Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves. The Grothendieck Festschrift, vol. 1, pp. 33-85, Boston Basel Stuttgart: Birkhäuser 1990 ·Zbl 0744.14024
[4][AV] Artin, M., Van den Bergh, M.: Twisted homogeneous coordinate rings. J. Algebra133, 249-271 (1990) ·Zbl 0717.14001 ·doi:10.1016/0021-8693(90)90269-T
[5][Bj] Björk, J.-E.: The Auslander condition on noetherian rings. Séminaire Dubreil-Malliavin 1987-8. Lect. Notes Math., vol. 1404, pp. 137-173, Berlin Heidelberg New York: Springer 1990
[6][BLR] Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Berlin Heidelberg New York: Springer 1990
[7][BS] Borevitch, Z.I., Shafarevitch, I.R.: Number theory. New York: Academic Press 1966
[8][EG] Evans, E.G., Griffith, P.: Syzygies. Lond. Math. Soc. Lect. Note Ser. vol. 106, Cambridge: Cambridge University Press 1986
[9][KL] Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand-Kirillov Dimension. Res. Notes Math. vol. 116, Boston: Pitman 1985 ·Zbl 0564.16001
[10][NV] Nastacescu, C., Van Oystaeyen, F.: Graded ring theory, p. 16. Amsterdam: North Holland 1982
[11][OF] Odeskii, A.B., Feigin, B.L.: Sklyanin algebras associated to elliptic curves. (Manuscript)
[12][Ra] Ramras, R.: Maximal orders over regular rings of dimension 2. Trans. Am. Math. Soc.142, 457-474 (1969) ·Zbl 0186.07101 ·doi:10.1090/S0002-9947-1969-0245572-2
[13][Re] Revoy, M.P.: Algèbres de Weyl en charactéristique p. C.R. Acad. Sci. Sér.A276, 225-227 (1973) ·Zbl 0265.16007
[14][Ro] Rowen, L.: Polynomial identities in ring theory. New York London: Academic Press 1980 ·Zbl 0461.16001
[15][Sn] Snider, R.L.: Noncommutative regular local rings of dimension 3. Proc. Am. Math. Soc.104, 49-50 (1988) ·Zbl 0669.16013
[16][SSW] Small, L.W., Stafford, J.T., Warfield, R.B.: Affine algebras of Gelfand-Kirillov dimension one are PI. Math. Proc. Camb. Philos. Soc.97, 407-414 (1985) ·Zbl 0561.16005 ·doi:10.1017/S0305004100062976
[17][Staf] Stafford, J.T.: Noetherian full quotient rings. Proc. Lond. Math. Soc.44, 385-404 (1982) ·Zbl 0485.16009 ·doi:10.1112/plms/s3-44.3.385
[18][Stan] Stanley, R.P.: Generating functions. In: Studies in Combinatorics. MAA Stud. Math., vol. 17, pp. 100-141, Washington: MAA, Inc. 1978
[19][VdB] Van den Bergh, M.: Regular algebras of dimension 3. Séminaire Dubreil-Malliavin 1986. Lect. Notes Math., vol. 1296, pp. 228-234, Berlin Heidelberg New York: Springer 1987
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp