Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Improved accuracy in finite element analysis of Biot’s consolidation problem.(English)Zbl 0760.73068

The Biot’s consolidation problem consisting in a boundary value problem for coupled equations describing linear elasticity and incompressible Newtonian fluid (porous incompressible medium) is considered. To improve the rates of convergence of finite element schemes to solve the problem, the authors propose a sequential Galerkin (Petrov-Galerkin) post- processing technique and study its applicability and advantages. There are numerical illustrations of the proposed scheme.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74E05 Inhomogeneity in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Cite

References:

[1]Terzaghi, K., Theoretical Soil Mechanics (1942), Wiley: Wiley New York
[2]Biol, M., General theory of 3-D consolidation, J. Appl. Phys., 12, 155-169 (1941) ·JFM 67.0837.01
[3]Biot, M., Theory of elasticity and consolidation for a porous anistropic solid, J. Appl. Phys., 26, 182-185 (1955) ·Zbl 0067.23603
[4]Biot, M., General solutions of the equations of elasticity and consolidation for a porous material, J. Appl. Mech., 78, 91-96 (1956) ·Zbl 0074.19101
[5]Biot, M.; Willis, D. G., The elastic coefficient of the theory of consolidation, J. Appl. Mech., 79, 594-601 (1957)
[6]Hwang, C. T.; Morgenstera, N. R.; Murray, D. W., On solutions of plane strain consolidation problems by finite element methods, Canad. Geotech. J., 8, 109-118 (1971)
[7]Sandhu, R. S.; Wilson, E. L., Finite element analysis of seepage in elastic media, J. Engrg. Mech. Div. Amer. Soc. Civil Engrg., 95, 641-652 (1969)
[8]Yokoo, Y.; Yamagata, K.; Nagaoka, H., Variational principles for consolidation, Soils and Foundations, 11, 4, 25-36 (1971)
[9]Yokoo, Y.; Yamagata, K.; Nagaoka, H., Finite element method applied to Biot’s consolidation theory, Soils and Foundations, 11, 1, 29-46 (1971)
[10]Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192 (1973) ·Zbl 0258.65108
[11]Girault, V.; Raviart, P. A., Finite Element Methods for Navier Stokes Equations (1986), Springer: Springer Berlin ·Zbl 0396.65070
[12]Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice Hall: Prentice Hall Englewood Cliffs, NJ ·Zbl 0634.73056
[13]Oden, J. T.; Carey, G. F., Finite Elements: Mathematical Aspects (1982), Prentice Hall: Prentice Hall Englewood Cliffs, NJ
[14]Roberts, J. E.; Thomas, J. M., Mixed and hybrid finite element methods, (Rapports de Recherche, 737 (1987), INRIA) ·Zbl 0875.65090
[15]Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Anal. Numér., 8, R-2, 129-151 (1974) ·Zbl 0338.90047
[16]Bercovier, M.; Pironneau, O., Error estimates for finite element solution of the Stokes problem in the primitive variable, Numer. Math., 33, 211-224 (1979) ·Zbl 0423.65058
[17]Fortin, M., Old and new finite elements for imcompressible flows, Internat J. Numer. Methods Fluids, 1, 347-364 (1983) ·Zbl 0467.76030
[18]Oden, J. T.; Jacquotte, O.-P., Stability of some mixed finite element methods for Stokesian flows, Comput. Methods Appl. Mech. Engrg., 43, 231-247 (1984) ·Zbl 0598.76033
[19]Stenberg, R., Analysis of mixed finite element methods for the Stokes problem: A unified approach, Math. Comput., 42, 9-23 (1984) ·Zbl 0535.76037
[20]Douglas, J.; Dupont, T., Galerkin methods for parabolic problems, SIAM J. Numer. Anal., 7, 575-625 (1970)
[21]Wheeler, M. F., A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10, 723-759 (1973) ·Zbl 0232.35060
[22]Thomée, V., Galerkin finite element methods for parabolic problems, (Lecture Notes in Mathematics 1054 (1984), Springer: Springer Berlin) ·Zbl 0617.65118
[23]Johnson, C.; Thomée, V., Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 15, 41-78 (1981) ·Zbl 0476.65074
[24]Suri, M., Mixed finite element methods for the approximation of time-dependent problems, Numer. Methods Partial Differential equations, 101-111 (1986) ·Zbl 0624.65108
[25]Ženišek, A., The existence and uniqueness theorem in Biot’s consolidation theory, Apl. Mat., 29, 194-210 (1984) ·Zbl 0557.35005
[26]Murad, M. A., (DSc Thesis (1990), Pontifícia Universidade Católica do Rio de Janeiro)
[27]Raviart, P. A.; Thomas, J. M., A mixed finite element method for second order elliptic problems, (Mathematical Aspects of the Finite Element Method. Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, 606 (1975), Springer: Springer Berlin), 292-315 ·Zbl 0362.65089
[28]Arnold, D. A.; Brezzi, F.; Douglas, J., PEERS: A new mixed finite element for plane elasticity, Japan J. Appl. Math., 1, 347-367 (1984) ·Zbl 0633.73074
[29]Ciarlet, P. G., The finite element method for elliptic problems (1978), North-Holland: North-Holland Amsterdam ·Zbl 0445.73043
[30]Toledo, E. M.; Loula, A. F.D.; Guerreiro, J. N.C., Mixed Petrov-Galerkin formulations for bidimensional elasticity, (XI Latin American and Iberic Congress on Computational Methods in Engineering. XI Latin American and Iberic Congress on Computational Methods in Engineering, Porto, Portugal (1989)) ·Zbl 1168.74459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp