Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Regularity of the four dimensional Sklyanin algebra.(English)Zbl 0758.16001

Let \(\alpha\), \(\beta\) and \(\gamma\) be elements of an algebraically closed field \(k\) of characteristic not two with \(\alpha+\beta+\gamma+\alpha\beta\gamma=0\). The Sklyanin algebra \(S=S(\alpha,\beta,\gamma)\) is the graded \(k\)-algebra with non-commutative generators \(x_ 1\), \(x_ 2\) and \(x_ 3\) of degree one satisfying 6 relations, of which 2 typical ones are \([x_ 0,x_ 1]=\alpha(x_ 2x_ 3+x_ 3x_ 2)\) and \([x_ 1,x_ 2]=x_ 0x_ 3+x_ 3x_ 0\). These algebras were introduced by Sklyanin in connection with his work on the quantum inverse scattering method. The authors’ main theorem concerns properties of \(S\) when two of \(\alpha\), \(\beta\), \(\gamma\) are not 1 and \(-1\) respectively. They prove that \(S\) is a Noetherian domain, its Hilbert series is that of a commutative polynomial ring in 4 variables and \(S\) is a regular graded algebra of dimension 4, i.e., \(S\) has global homological dimension 4, the graded part \(S_ n\) has Gelfand-Kirillov dimension \(\leq n^ r\) for some real number \(r\), and \(S\) is Gorenstein, i.e., \(\text{Ext}^ q_ S(k,A)=\delta_{4,q}k\). The authors set up an algebraic geometric approach, and develop machinery which is analogous to the treatment of 3-dimensional algebras given recently by Artin, Tate and van den Bergh. Some of these geometric ideas involve elliptic curves and theta functions.

MSC:

16E10 Homological dimension in associative algebras
16P40 Noetherian rings and modules (associative rings and algebras)
16W50 Graded rings and modules (associative rings and algebras)
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
17B37 Quantum groups (quantized enveloping algebras) and related deformations
14H52 Elliptic curves

Cite

References:

[1]D.J. Anick , On the homology of associative algebras , Trans. Amer. Math. Soc., 296 (1986), 641-659. ·Zbl 0598.16028 ·doi:10.2307/2000383
[2]M. Artin and W. Schelter , Graded algebras of global dimension 3 , Adv. Math., 66 (1987), 171-216. ·Zbl 0633.16001 ·doi:10.1016/0001-8708(87)90034-X
[3]M. Artin , J. Tate and M. Van Den Bergh , Some algebras associated to automorphisms of elliptic curves , The Grothendieck Festschrift, P. Cartier et al. Editors, Birkhauser (1990). ·Zbl 0744.14024
[4]M. Artin , J. Tate and M. Van Den Bergh. Modules over regular algebras of dimension 3 , Invent Math. (to appear). ·Zbl 0763.14001 ·doi:10.1007/BF01243916
[5]M. Artin and M. Van Den Bergh , Twisted homogeneous coordinate rings , J. Algebra, 133 (1990), 249-271. ·Zbl 0717.14001 ·doi:10.1016/0021-8693(90)90269-T
[6]G.M. Bergman , The diamond lemma for ring theory , Adv. Math., 29 (1978), 178-218. ·doi:10.1016/0001-8708(78)90010-5
[7]I.V. Cherednik , On R-matrix quantization of formal loop groups (in Russian) , in Group-theoretic methods in Physics . Proc. Yurmal Conference, Moscow: Nauka, 1985. ·Zbl 0674.17002
[8]P.M. Cohn , Algebra , Vol. 2, Wiley, London, 1977. ·Zbl 0341.00002
[9]R. Hartshorne , Algebraic Geometry , Springer-Verlag (1977). ·Zbl 0367.14001
[10]D. Husemöller , Elliptic Curves , Springer-Verlag (1987). ·Zbl 0605.14032
[11]M. Jimbo , A q-difference analogue of U(g) and the Yang-Baxter equation , Lett. Math. Phys., 10 (1985), 63-69. ·Zbl 0587.17004 ·doi:10.1007/BF00704588
[12]G. Krause and T.H. Lenagan , Growth of Algebras and Gelfand-Kirillov Dimension , Pitman, London, (1985). ·Zbl 0564.16001
[13]Yu. I. Manin , Some remarks on Koszul algebras and Quantum groups , Ann. Inst. Fourier, 37 (1987) 191-205. ·Zbl 0625.58040 ·doi:10.5802/aif.1117
[14]Yu. I. Manin , Quantum groups and Non-commutative geometry , Les Publ. du Centre de Recherches Math., Université de Montreal, 1988. ·Zbl 0724.17006
[15]J C. McConnell and J.C. Robson , Non-commutative Noetherian Rings , Wiley-Interscience, Chichester, 1987. ·Zbl 0644.16008
[16]D. Mumford , Abelian Varieties , Oxford Univ. Press, 1975. ·Zbl 0326.14012
[17]D. Mumford , Varieties defined by quadratic relations , in Questions on Algebraic Varieties , Ed. E. Marchionne, C.I.M.E., III Ciclo, Varenna 1969, Roma 1970. ·Zbl 0198.25801
[18]A.V. Odesskii and B.L. Feigin , Sklyanin algebras associated with an elliptic curve (in Russian), Preprint (1989).
[19]A.V. Odesskii and B.L. Feigin , Elliptic Sklyanin algebras (in Russian), Funk. Anal. Prilozh., 23(3) (1989), 45-54. ·Zbl 0687.17001
[20]S.B. Priddy , Koszul resolutions , Trans. Amer. Math. Soc., 152 (1970), 39-60. ·Zbl 0261.18016 ·doi:10.2307/1995637
[21]J.J. Rotman , An Introduction to Homological Algebra , Academic Press, 1979. ·Zbl 0441.18018
[22]E.K. Sklyanin , Some algebraic structures connected to the Yang-Baxter equation , Func. Anal. Appl., 16 (1982), 27-34. ·Zbl 0513.58028 ·doi:10.1007/BF01077848
[23]E.K. Sklyanin , Some algebraic structures connected to the Yang-Baxter equation. Representations of Quantum algebras , Func. Anal. Appl., 17 (1983), 273-284. ·Zbl 0536.58007 ·doi:10.1007/BF01076718
[24]H.M. Weber , Lehrbuch der Algebra , Vol. 3, Chelsea Publ. Co., New York (1961).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp