16E10 | Homological dimension in associative algebras |
16P40 | Noetherian rings and modules (associative rings and algebras) |
16W50 | Graded rings and modules (associative rings and algebras) |
16E50 | von Neumann regular rings and generalizations (associative algebraic aspects) |
17B37 | Quantum groups (quantized enveloping algebras) and related deformations |
14H52 | Elliptic curves |
[1] | D.J. Anick , On the homology of associative algebras , Trans. Amer. Math. Soc., 296 (1986), 641-659. ·Zbl 0598.16028 ·doi:10.2307/2000383 |
[2] | M. Artin and W. Schelter , Graded algebras of global dimension 3 , Adv. Math., 66 (1987), 171-216. ·Zbl 0633.16001 ·doi:10.1016/0001-8708(87)90034-X |
[3] | M. Artin , J. Tate and M. Van Den Bergh , Some algebras associated to automorphisms of elliptic curves , The Grothendieck Festschrift, P. Cartier et al. Editors, Birkhauser (1990). ·Zbl 0744.14024 |
[4] | M. Artin , J. Tate and M. Van Den Bergh. Modules over regular algebras of dimension 3 , Invent Math. (to appear). ·Zbl 0763.14001 ·doi:10.1007/BF01243916 |
[5] | M. Artin and M. Van Den Bergh , Twisted homogeneous coordinate rings , J. Algebra, 133 (1990), 249-271. ·Zbl 0717.14001 ·doi:10.1016/0021-8693(90)90269-T |
[6] | G.M. Bergman , The diamond lemma for ring theory , Adv. Math., 29 (1978), 178-218. ·doi:10.1016/0001-8708(78)90010-5 |
[7] | I.V. Cherednik , On R-matrix quantization of formal loop groups (in Russian) , in Group-theoretic methods in Physics . Proc. Yurmal Conference, Moscow: Nauka, 1985. ·Zbl 0674.17002 |
[8] | P.M. Cohn , Algebra , Vol. 2, Wiley, London, 1977. ·Zbl 0341.00002 |
[9] | R. Hartshorne , Algebraic Geometry , Springer-Verlag (1977). ·Zbl 0367.14001 |
[10] | D. Husemöller , Elliptic Curves , Springer-Verlag (1987). ·Zbl 0605.14032 |
[11] | M. Jimbo , A q-difference analogue of U(g) and the Yang-Baxter equation , Lett. Math. Phys., 10 (1985), 63-69. ·Zbl 0587.17004 ·doi:10.1007/BF00704588 |
[12] | G. Krause and T.H. Lenagan , Growth of Algebras and Gelfand-Kirillov Dimension , Pitman, London, (1985). ·Zbl 0564.16001 |
[13] | Yu. I. Manin , Some remarks on Koszul algebras and Quantum groups , Ann. Inst. Fourier, 37 (1987) 191-205. ·Zbl 0625.58040 ·doi:10.5802/aif.1117 |
[14] | Yu. I. Manin , Quantum groups and Non-commutative geometry , Les Publ. du Centre de Recherches Math., Université de Montreal, 1988. ·Zbl 0724.17006 |
[15] | J C. McConnell and J.C. Robson , Non-commutative Noetherian Rings , Wiley-Interscience, Chichester, 1987. ·Zbl 0644.16008 |
[16] | D. Mumford , Abelian Varieties , Oxford Univ. Press, 1975. ·Zbl 0326.14012 |
[17] | D. Mumford , Varieties defined by quadratic relations , in Questions on Algebraic Varieties , Ed. E. Marchionne, C.I.M.E., III Ciclo, Varenna 1969, Roma 1970. ·Zbl 0198.25801 |
[18] | A.V. Odesskii and B.L. Feigin , Sklyanin algebras associated with an elliptic curve (in Russian), Preprint (1989). |
[19] | A.V. Odesskii and B.L. Feigin , Elliptic Sklyanin algebras (in Russian), Funk. Anal. Prilozh., 23(3) (1989), 45-54. ·Zbl 0687.17001 |
[20] | S.B. Priddy , Koszul resolutions , Trans. Amer. Math. Soc., 152 (1970), 39-60. ·Zbl 0261.18016 ·doi:10.2307/1995637 |
[21] | J.J. Rotman , An Introduction to Homological Algebra , Academic Press, 1979. ·Zbl 0441.18018 |
[22] | E.K. Sklyanin , Some algebraic structures connected to the Yang-Baxter equation , Func. Anal. Appl., 16 (1982), 27-34. ·Zbl 0513.58028 ·doi:10.1007/BF01077848 |
[23] | E.K. Sklyanin , Some algebraic structures connected to the Yang-Baxter equation. Representations of Quantum algebras , Func. Anal. Appl., 17 (1983), 273-284. ·Zbl 0536.58007 ·doi:10.1007/BF01076718 |
[24] | H.M. Weber , Lehrbuch der Algebra , Vol. 3, Chelsea Publ. Co., New York (1961). |