Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Perpendicular categories with applications to representations and sheaves.(English)Zbl 0748.18007

Authors’ introduction: This paper is concerned with the omnipresence of the formation of the subcategories right (left) perpendicular to a subcategory of objects in an abelian category. We encounter these subcategories in various contexts:
– the formation of quotient categories with respect to localizing subcategories;
– the deletion of vertices and shrinking of arrows in the representation theory of finite dimensional algebras;
– the comparison of the representation theories of different extended Dynkin quivers;
– the theory of tilting;
– the study of homological epimorphisms of rings;
– the passage from graded modules to coherent sheaves on a possibly weighted projective variety or scheme;
– the study of (maximal) Cohen-Macaulay modules over surface singularities;
– the comparison of weighted projective lines for different weight sequences;
– the formation of affine and local algebras attached to path algebras of extended Dynkin quivers, canonical algebras, and weighted projective lines.
Formation of the perpendicular category has many aspect in common with localization and allows one to dispose of localization techniques in situations not accessible to any of the classical concepts of localization. This applies in particular to applications in the domain of finite dimensional algebras and their representations. Several applications of the methods presented in this paper are already in existence, partly published, or appearing in print in the near future and have shown the versatility of the notion of a perpendicular category.
It seems that (right) perpendicular categories first appeared — as the subcategories of so-called closed objects — in the process of the formation of the quotient category of an abelian category with respect to a localizing Serre subcategory. Another natural occurrence is encountered in Commutative Algebra, forming the possibly infinitely generated modules of depth \(\geq 2\). The concept and some of the central applications were first presented in a talk given by the first author at the Honnef meeting in January 1985.

MSC:

18E35 Localization of categories, calculus of fractions
16G30 Representations of orders, lattices, algebras over commutative rings
16G50 Cohen-Macaulay modules in associative algebras

Cite

References:

[1]Arnold, V. I., Singularity theory, (London Math. Soc. Lecture Notes, Vol. 53 (1981), Cambridge Univ. Press: Cambridge Univ. Press London/New York) ·Zbl 0457.58002
[2]Auslander, M.; Reiten, I., Cohen-Macaulay modules for graded Cohen-Macaulay rings and their completions, (Preprint 13/1987 (1987)), Trondheim, Norway ·Zbl 0731.13007
[4]Baer, D., A note on wild quiver algebras and tilting of modules, Comm. Algebras, 17, 751-757 (1989) ·Zbl 0665.16019
[5]Bear, D., Tilting sheaves in representation theory of algebras, Manuscripta Math., 60, 323-347 (1988) ·Zbl 0639.16018
[6]Baer, D.; Geigle, W.; Lenzing, H., The preprojective algebra of a tame hereditary Artin algebra, Comm. Algebra, 15, 425-457 (1987) ·Zbl 0612.16015
[7]Beilinson, A. A., Coherent sheaves on\(P}_n\) and problems of linear algebra, Functional Anal. Appl., 12, 214-216 (1979) ·Zbl 0424.14003
[8]Beltrametti, M.; Robbiano, L., Introduction to the theory of weighted projective spaces, Exposition Math., 4, 111-162 (1986) ·Zbl 0623.14025
[9]Bongartz, K., Tilted algebras, (Representations of Algebras. Representations of Algebras, Lecture Notes in Math., Vol.903 (1981), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 26-38 ·Zbl 0478.16025
[10]Bongartz, K.; Gabriel, P., Covering spaces in representation theory, Invent. Math., 65, 331-378 (1982) ·Zbl 0482.16026
[11]Brenner, S.; Butler, M. C.R, Generalization of the Bernstein-Gelfand-Panomarev reflection functors, (Representation Theory, II. Representation Theory, II, Lect. Notes in Math., Vol. 832 (1980), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 103-169 ·Zbl 0446.16031
[12]Cartan, H.; Eilenberg, S., Homological Algebra (1956), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ ·Zbl 0075.24305
[13]Delorme, C., Espaces projectifs anisotropes, Bull. Soc. Math. France, 103, 203-223 (1975) ·Zbl 0314.14016
[14]Dlab, V.; Ringel, C. M., Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., 173 (1976) ·Zbl 0332.16015
[15]Dolgachev, I., Weighted projective varieties, (Group Actions and Vector Fields. Group Actions and Vector Fields, Lecture Notes in Math., Vol. 956 (1982), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 34-71 ·Zbl 0516.14014
[16]Donovan, P.; Freislich, M. R., The representation theory of finite graphs and associative algebras, Carleton Lecture Notes, Vol. 5 (1973) ·Zbl 0294.20009
[17]Esnault, H.; Knörrer, H., Reflexive modules over rational double points, Math. Ann., 272, 545-548 (1985) ·Zbl 0577.14023
[18]Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1967) ·Zbl 0201.35602
[19]Gabriel, P., The universal cover of a representation-finite algebra, (Representations of Algebras. Representations of Algebras, Lecture Notes in Math., Vol. 903 (1981), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 68-105, Proceedings, Puebla, Mexico, 1980 ·Zbl 0481.16008
[20]Gabriel, P.; de la Pena, J. A., Quotients of representation-finite algebras, Comm. Algebra, 15, 279-307 (1987) ·Zbl 0609.16013
[21]Geigle, W.; Lenzing, H., A class of weighted projective curves arising in representa-tion theory of finite dimensional algebras, (Singularities, Representations of Algebras, and Vector Bundles. Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math., Vol. 1273 (1987), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 265-297 ·Zbl 0651.14006
[22]Gordon, R.; Green, E. L., Representation theory of graded artin algebras, J. Algebra, 76, 138-152 (1982) ·Zbl 0491.16002
[23]Green, E. L., Graphs with relations, coverings and group-graded algebras, Trans. Amer. Math. Soc., 279, 297-310 (1983) ·Zbl 0536.16001
[24]Grothendieck, A., Éléments de géométrie algébrique, II (1961), Publ. Institut des Hautes Études Scientifiques: Publ. Institut des Hautes Études Scientifiques Paris
[25]Happel, D., Triangulated categories in representation theory of finite dimensional algebras, Comment. Math. Helv., 62, 339-389 (1987) ·Zbl 0626.16008
[26]Happel, D.; Rickard, J.; Schofield, A., Piecewise hereditary algebras, Bull. London Math. Soc., 20, 23-28 (1988) ·Zbl 0638.16018
[27]Happel, D.; Ringel, C. M., Tilted algebras, Trans. Amer. Math. Soc., 274, 399-443 (1982) ·Zbl 0503.16024
[28]Hartshorne, R., Residues and duality, (Lecture Notes in Math., Vol. 20 (1966), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York) ·Zbl 0196.24301
[29]Klein, F., Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade (1884), Teubner: Teubner Leipzig ·JFM 16.0061.01
[30]Lenzing, H., Curve singularities arising from the representation theory of tame hereditary Artin algebras, (Representation Theory. I. Finite Dimensional Algebras. Representation Theory. I. Finite Dimensional Algebras, Lecture Notes in Math., Vol. 1177 (1986), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 199-231 ·Zbl 0626.16013
[31]Mitchell, B., Theory of Categories (1965), Academic Press: Academic Press San Diego ·Zbl 0136.00604
[32]Miyashita, Y., Tilting modules of finite projective dimension, Math. Z., 193, 113-146 (1986) ·Zbl 0578.16015
[33]Nazarova, L. A., Representations of quivers of infinite type, Izv. Akad. Nauk SSR Ser. Mat., 37, 752-791 (1973) ·Zbl 0298.15012
[34]Popescu, N., Abelian Categories with Applications to Rings and Modules (1973), Academic Press: Academic Press London/New York ·Zbl 0271.18006
[35]Quillen, D., Higher algebraic K-theory, (Algebraic K-theory. Algebraic K-theory, Lecture Notes in Math., Vol. 341 (1973), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 85-147 ·Zbl 0292.18004
[36]Riedtmann, C., Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv., 55, 199-224 (1980) ·Zbl 0444.16018
[37]Ringel, C. M., Tame algebras, (Representation Theory, I. Representation Theory, I, Lecture Notes in Math., Vol. 831 (1980), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 137-287, Proceedings, Ottawa, 1979 ·Zbl 0448.16019
[38]Ringel, C. M., Tame algebras and integral quadratic forms, (Lecture Notes in Math., Vol. 1099 (1984), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York) ·Zbl 0546.16013
[39]Schofield, A., Generic representations of quivers (1986), preprint ·Zbl 0592.16021
[40]Schofield, A. H., Representations of Rings over Skew Fields (1985), Cambridge Univ. Press: Cambridge Univ. Press Cambridge ·Zbl 0571.16001
[41]Serre, J.-P, Algèbre locale, multiplicités, (Lecture Notes in Math., Vol. 11 (1965), Springer-Verlag: Springer-Verlag New York/Heidelberg/Berlin) ·Zbl 0091.03701
[42]Serre, J.-P, Faisceaux algébriques cohérents, Ann. of Math., 61, 197-278 (1955) ·Zbl 0067.16201
[43]Silver, L., Noncommutative localizations and applications, J. Algebra, 7, 44-76 (1967) ·Zbl 0173.03305
[44]Slodowy, P., Platonic solids, Kleinian singularities and Lie groups, (Algebraic Geometry. Algebraic Geometry, Lecture Notes in Math., Vol. 1008 (1983), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 102-138 ·Zbl 0516.14002
[45]Strauβ, H., A reduction process via tilting theory, C. R. Math. Rep. Acad. Sci. Canada, 9, 161-166 (1987) ·Zbl 0639.16019
[46]Strauβ, H., On the perpendicular category of a partial tilting module (1989), preprint
[47]Swan, R. G., Algebraic K-theory, (Lecture Notes in Math., Vol. 76 (1968), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York) ·Zbl 0193.34601
[48]Tachikawa, H.; Wakamatsu, T., Tilting functors and stable equivalences for self-injective algebras (1986), preprint
[50]Verdier, J. L., Catégories dérivés, état 0, (Séminaire Géométrie Algébrique, \(4 12\). Séminaire Géométrie Algébrique, \(4 12\), Lecture Notes in Math., Vol. 569 (1977), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 262-311 ·Zbl 0407.18008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp