Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Finding minimum area \(k\)-gons.(English)Zbl 0746.68038

Let \(P\) be a set of \(n\) points in the plane. Assume \(k\geq 3\). The problem considered is to find a convex polygon \(C\) with vertices from \(P\) of minimum area that satisfies one of the following conditions:
(1) \(C\) is a convex \(k\)-gon,
(2) \(C\) is an empty convex \(k\)-gon (i.e., \(P\cap\text{int} C=\emptyset\)),
(3) \(C\) is the convex hull fo exactly \(k\) points of \(P\).
It is shown here that each of these problems can be solved by an algorithm of time complexity \(O(kn^ 3)\) and space complexity \(O(kn^ 2)\) (for \(k=4\) this is only \(O(n)\)). The algorithms are based on dynamic programming. The method extends to several similar extremum problems.

MSC:

68Q25 Analysis of algorithms and problem complexity
52A10 Convex sets in \(2\) dimensions (including convex curves)
90C39 Dynamic programming

Cite

References:

[1]A. Aggarwal and J. Wein,Computational Geometry, Lecture Notes for 18.409, MIT Laboratory for Computer Science, 1988.
[2]A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a matrix-searching algorithm,Algorithmica2 (1987), 195-208. ·Zbl 0642.68078 ·doi:10.1007/BF01840359
[3]A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Findingk points with minimum diameter and related problems,Proc. 5th ACM Symp. on Computational Geometry, 1989, pp. 283-291. ·Zbl 0715.68082
[4]D. Avis and D. Rappaport, Computing the largest empty convex subset of a set of points,Proc. 1st ACM Symp. on Computational Geometry, 1985, pp. 161-167.
[5]J. E. Boyce, D. P. Dobkin, R. L. Drysdale, and L. J. Guibas, Finding extremal polygons,SIAM J. Comput.14 (1985), 134-147. ·Zbl 0557.68034 ·doi:10.1137/0214011
[6]Dobkin, D. P.; Drysdale, R. L.; Guibas, L. J., Finding smallest polygons, 181-214 (1983), Greenwich, CT
[7]D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars, Searching for empty convex polygons,Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 224-228. ·Zbl 0697.68034
[8]H. Edelsbrunner,Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical. Computer Science, Springer-Verlag, Berlin, 1987. ·Zbl 0634.52001 ·doi:10.1007/978-3-642-61568-9
[9]H. Edelsbrunner and L. J. Guibas, Topologically sweeping in an arrangement,Proc. 18th ACM Symp. on Theory of Computing, 1986, pp. 389-403. ·Zbl 0676.68013
[10]H. Edelsbrunner, J. O’Rourke, and R. Seidel, Constructing arrangements of lines and hyperplanes with applications,SIAM J. Comput.15 (1986), 341-363. ·Zbl 0603.68104 ·doi:10.1137/0215024
[11]D. Eppstein, New algorithms for minimum areak-gons,Proc. 3rd ACM/SIAM Symp. on Discrete Algorithms, 1992, to appear. ·Zbl 0829.68117
[12]J. D. Horton, Sets with no empty convex 7-gons,Canad. Math. Bull.26 (1983), 482-484. ·Zbl 0521.52010 ·doi:10.4153/CMB-1983-077-8
[13]J. I. Munro and R. J. Ramirez, Reducing space requirements for shortest path problems,Oper. Res.30 (1982), 1009-1013. ·Zbl 0492.90080 ·doi:10.1287/opre.30.5.1009
[14]M. H. Overmars, B. Scholten, and I. Vincent, Sets without empty convex 6-gons,Bull. EATCS37 (1989), 160-160. ·Zbl 1023.68686
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp