Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Regularity and existence of solutions of elliptic equations with p,q- growth conditions.(English)Zbl 0724.35043

This paper deals with weak solutions of ellipitic equations of the form: \[ (1.1)\quad \sum^{n}_{i=1}\partial_{x_ i}a^ i(x,Du)=b(x),\quad x\in \Omega, \] where \(\Omega\) is an open subset of \({\mathbb{R}}^ n\) and \(a^ i\) satisfy some nonstandard growth conditions: \[ \sum a^ i_{S_ i}(x,\xi)\lambda_ i\lambda_ j\geq m(1+| \xi |^ 2)^{(p-2)/2}| \lambda |^ 2,\quad | a^ i_{\xi_ i}(x,\xi)| \leq M(1+| \xi |^ 2)^{(q- 2)/2},\quad q\geq p\geq 2. \] The first is a regularity result: every weak solution to (1.1) of class \(W^{1,q}_{loc}(\Omega)\) is locally Lipschitz continuous in \(\Omega\). A second type of result concerns the existence of solutions to equation (1.1) satisfying some given Dirichlet boundary conditions: the “a priori” regularity results previously stated are applied here.
Reviewer: M.A.Vivaldi (Roma)

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35D10 Regularity of generalized solutions of PDE (MSC2000)

Cite

References:

[1]Brezis, H., Analyse fonctionnelle, Théorie et applications (1983), Masson: Masson Paris ·Zbl 0511.46001
[2]Di Benedetto, E., \(C^{1 + α}\) local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. Theory Methods Appl., 7, 827-850 (1983) ·Zbl 0539.35027
[3]Donaldson, T., Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differential Equations, 10, 507-528 (1971) ·Zbl 0218.35028
[4]Evans, L. C., A new proof of local \(C^{1, α}\) regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45, 356-373 (1982) ·Zbl 0508.35036
[5]Fougeres, A., Opérateurs elliptiques du calcul des variations à coefficients très fortement non linéaires, C. R. Acad. Sci. Paris Sér. A, 274, 763-766 (1972) ·Zbl 0248.47028
[6]Giaquinta, M., Growth conditions and regularity, a counterexample, Manuscripta Math., 59, 245-248 (1987) ·Zbl 0638.49005
[7]Giusti, E., Equazioni ellittiche del secondo ordine, (Quaderni Unione Mat. Italiana (1978), Pitagora: Pitagora Bologna), No. 6 ·Zbl 1308.35001
[8]Gossez, J. P., Surjectivity results for psuedo-monotone mappings in complementary systems, J. Math. Anal. Appl., 53, 484-494 (1976) ·Zbl 0325.47042
[9]Krasnosel’skiǐ, M. A.; Rutickiǐ, Y. B., Convex functions and Orlicz spaces (1961), Noordhoff: Noordhoff Groningen ·Zbl 0095.09103
[10]Ladyzhenskaya, O.; Ural’tseva, N., Linear and quasilinear elliptic equations, (Math. in Science and Engineering, Vol. 46 (1968), Academic Press: Academic Press San Diego) ·Zbl 0164.13002
[11]Leray, J.; Lions, J. L., Quelques résultats de Višik sur les problèmes non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93, 97-107 (1965) ·Zbl 0132.10502
[12]Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris ·Zbl 0189.40603
[13]Marcellini, P., On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Analyse Non Linéaire, 3, 391-409 (1986) ·Zbl 0609.49009
[14]Marcellini, P., Un exemple de solution discontinue d’un problème variationnel dans le cas scalaire, (preprint Istituto Matematico “U. Dini,” No. 11 (1987), Università di Firenze)
[15]Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal., 105, 267-284 (1989) ·Zbl 0667.49032
[16]Moser, J., A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13, 457-468 (1960) ·Zbl 0111.09301
[17]Robert, J., Opérateurs elliptiques non linéaires avec coefficients très fortement non linéaires, C. R. Acad. Sci. Paris Sér. A, 273, 1063-1066 (1971) ·Zbl 0243.35036
[18]Uhlenbeck, K., Regularity for a class of non-linear elliptic systems, Acta Math., 138, 219-240 (1977) ·Zbl 0372.35030
[19]Zhikov, V. V., Averaging of functional of the calculus of variations and elasticity theory, Math. USSR-Izv., 29, 33-66 (1987) ·Zbl 0599.49031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp