[1] | F. J. Almgren, Spherical symmetrization, Proc. Internat. Workshop on Integral Functionals in the Calculus of Variations, Trieste, September 1985, Supplemento Rend. Circ. Mat. Palermo (2) 15 (1987), 1-25. |
[2] | F. J. Almgren and E. H. Lieb, The (non)continuity of symmetric decreasing rearrangement. This is a summary of our results. It is to be published in Sympos. Math., Proc. Conf. on Geometry of Solutions to PDE, Academic Press, New York, and in Proc. Workshop on Variational Problems, Paris, June 1988. ·Zbl 0704.46017 |
[3] | Frederick J. Almgren Jr. and Elliott H. Lieb, Symmetric decreasing rearrangement can be discontinuous, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 2, 177 – 180. ·Zbl 0692.46028 |
[4] | A. Ambrosetti and R. E. L. Turner, Some discontinuous variational problems, Differential Integral Equations 1 (1988), no. 3, 341 – 349. ·Zbl 0728.35037 |
[5] | Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573 – 598 (French). ·Zbl 0371.46011 |
[6] | Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. ·Zbl 0436.35063 |
[7] | J. L. Bona, D. K. Bose, and R. E. L. Turner, Finite-amplitude steady waves in stratified fluids, J. Math. Pures Appl. (9) 62 (1983), no. 4, 389 – 439 (1984). ·Zbl 0491.35049 |
[8] | Haïm Brézis and Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486 – 490. ·Zbl 0526.46037 |
[9] | H. J. Brascamp, Elliott H. Lieb, and J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Functional Analysis 17 (1974), 227 – 237. ·Zbl 0286.26005 |
[10] | John E. Brothers and William P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153 – 179. ·Zbl 0633.46030 |
[11] | Giuseppe Chiti, Rearrangements of functions and convergence in Orlicz spaces, Applicable Anal. 9 (1979), no. 1, 23 – 27. ·Zbl 0424.46023 ·doi:10.1080/00036817908839248 |
[12] | J.-M. Coron, The continuity of the rearrangement in \?^{1,\?}(\?), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 57 – 85. ·Zbl 0574.46021 |
[13] | J. A. Crowe, J. A. Zweibel, and P. C. Rosenbloom, Rearrangements of functions, J. Funct. Anal. 66 (1986), no. 3, 432 – 438. ·Zbl 0612.46027 ·doi:10.1016/0022-1236(86)90067-4 |
[14] | Michael G. Crandall and Luc Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78 (1980), no. 3, 385 – 390. ·Zbl 0449.47059 |
[15] | G. F. D. Duff, A general integral inequality for the derivative of an equimeasurable rearrangement, Canad. J. Math. 28 (1976), no. 4, 793 – 804. ·Zbl 0342.26015 ·doi:10.4153/CJM-1976-076-0 |
[16] | Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. ·Zbl 0176.00801 |
[17] | Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. ·Zbl 0516.49003 |
[18] | Keijo Hildén, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math. 18 (1976), no. 3, 215 – 235. ·Zbl 0365.46031 ·doi:10.1007/BF01245917 |
[19] | G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1934. ·JFM 60.0169.01 |
[20] | Bernhard Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985. ·Zbl 0593.35002 |
[21] | Elliott H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math. 57 (1976/77), no. 2, 93 – 105. ·Zbl 0369.35022 |
[22] | Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349 – 374. ·Zbl 0527.42011 ·doi:10.2307/2007032 |
[23] | G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. ·Zbl 0044.38301 |
[24] | F. Riesz, Sur une inégalité intégrale, J. London Math. Soc. 5 (1930), 162-168. ·JFM 56.0232.02 |
[25] | Bernhard Ruf and Sergio Solimini, On a class of superlinear Sturm-Liouville problems with arbitrarily many solutions, SIAM J. Math. Anal. 17 (1986), no. 4, 761 – 771. ·Zbl 0608.34019 ·doi:10.1137/0517055 |
[26] | Emanuel Sperner Jr., Symmetrisierung für Funktionen mehrerer reeler Variablen, Manuscripta Math. 11 (1974), 159 – 170 (German, with English summary). ·Zbl 0268.26011 ·doi:10.1007/BF01184955 |
[27] | Emanuel Sperner Jr., Zur Symmetrisierung von Funktionen auf Sphären, Math. Z. 134 (1973), 317 – 327 (German). ·Zbl 0283.26015 ·doi:10.1007/BF01214695 |
[28] | James Serrin, On a fundamental theorem of the calculus of variations, Acta Math. 102 (1959), 1 – 22. , https://doi.org/10.1007/BF02559565 James Serrin, A new definition of the integral for nonparametric problems in the calculus of variations, Acta Math. 102 (1959), 23 – 32. ·Zbl 0089.08601 ·doi:10.1007/BF02559566 |
[29] | James Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc. 101 (1961), 139 – 167. ·Zbl 0102.04601 |
[30] | Paul Concus and Robert Finn , Variational methods for free surface interfaces, Springer-Verlag, New York, 1987. ·Zbl 0605.00007 |
[31] | Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353 – 372. ·Zbl 0353.46018 ·doi:10.1007/BF02418013 |
[32] | Hassler Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), no. 4, 514 – 517. ·Zbl 0013.05801 ·doi:10.1215/S0012-7094-35-00138-7 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.