Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Topologically sweeping an arrangement.(English)Zbl 0676.68013

Many computation geometric problems in the plane may be solved by constructing and searching planar line arrangements, see e.g. papers byB. Chazelle,L. Guibas,D. T. Lee [BIT 25, 76-90 (1985;Zbl 0603.68072)] andH. Edelsbrunner,J. O’Rourke,R. Seidel [SIAM J. Comput. 15, 341-363 (1986;Zbl 0603.68104)] where optimal \(0(n^ 2)\) time and space algorithms are given for constructing planar line arrangements. In many cases, however, it turns out that one actually needs not to construct the whole arrangement explicitly but rather enumerate its elements in some (partial) order.
The present paper gives an algorithm to accomplish this using only 0(n) space. The method used is the generalization of the well-known sweepline paradigm called topological line sweep where the topological line may be viewed as a y-monotone curve moving from left to right not as a whole but “stretching out” in amoeba-like way. This leads to space or/and time improvements for a number of problems discussed in the paper. See also the paper ofL. Guibas,R. Seidel [Discrete Comput. Geom. 2, 175-193 (1987;Zbl 0623.68043)] for another implementation of the topological sweep for overlaying planar convex maps in time linear in the \(input+output\) size.
Reviewer: N.Korreanko

MSC:

68Q25 Analysis of algorithms and problem complexity
68U99 Computing methodologies and applications

Cite

References:

[1]Asano, T.; Asano, T.; Guibas, L. J.; Hershberger, J.; Imai, H., Visibility-polygon search and euclidean shortest paths, (Proceedings, 26th Annual Found. of Comput. Sci. Symposium (1985)), 155-164
[2]Aho, A. V.; Hopcroft, J. E.; Ullman, J. D., The Design and Analysis of Computer Algorithms (1974), Addison-Wesley: Addison-Wesley Reading, MA ·Zbl 0286.68029
[3]Avis, D.; Rappaport, D., Computing the largest empty convex subset of a set of points, (Proceedings, 1st ACM Symposium on Comput. Geom. (1985)), 161-167
[4]Bentley, J.; Saxe, J. B., Decomposable searching problems 1. Static to dynamic transformation, J. Algorithms, 1, 301-358 (1980) ·Zbl 0461.68065
[5]Chazelle, B. M.; Guibas, L. J.; Lee, D. T., The power of geometric duality, BIT, 25, 76-90 (1985) ·Zbl 0603.68072
[6]Chvatàl, V.; Klincsek, G., Finding largest convex subsets, (Proceedings, 11th SE Conf. on Combin., Graph Theory and Comput (1980)) ·Zbl 0474.52004
[7]Edelsbrunner, H., Algorithms in Combinatorial Geometry (1987), Springer-Verlag: Springer-Verlag Heidelberg ·Zbl 0634.52001
[8]Edelsbrunner, H.; Mücke, E. P., Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms (1987), manuscript
[9]Edelsbrunner, H.; Guibas, L. J.; Stolfi, J., Optimal point location in a monotone subdivision, SIAM J. Comput., 15, 317-340 (1986) ·Zbl 0602.68102
[10]Edelsbrunner, H.; O’Rourke, J.; Seidel, R., Constructing arrangements of lines and hyperplanes with appllications, SIAM J. Comput., 15, 317-340 (1986) ·Zbl 0603.68104
[11]Edelsbrunner, H.; Overmars, M. H.; Wood, D., Graphics in flatland: A case study, (Preparata, F. P., Advances in Computing Research, 1 (1983), Jai: Jai Greenwich, CT), 35-59
[12]Erdös, P.; Szekeres, G., A combinatorial problem in geometry, Composition Math., 2, 463-470 (1935) ·JFM 61.0651.04
[13]Erdös, P.; Szekeres, G., On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest, 3, 53-62 (1960) ·Zbl 0103.15502
[14]Edelsbrunner, H.; Welzl, E., Constructing belts in two-dimensional arrangements with applications, SIAM J. Comput., 15, 271-284 (1986) ·Zbl 0613.68043
[15]Fabella, G.; O’Rourke, J., Twenty-two points with No Empty Hexagon, (Rep. JHU/EECS-8603 (1986), Dept. of Electri. Engin. and Comput. Sci. Johns Hopkins University: Dept. of Electri. Engin. and Comput. Sci. Johns Hopkins University Baltimore, MD)
[16]Fredman, M. L., On the information theoretic lower bound, Theoret. Comput. Sci., 1, 355-361 (1976) ·Zbl 0327.68056
[17]Fredman, M. L.; Tarjan, R. E., Fibonacci heaps and their uses in improved network optimization algorithms, (Proceedings, 21st Annual Found. of Comput. Sci. Symposium (1984)), 338-346
[18]Grünbaum, B., Arrangements and Spreads, (Reg. Conf. Ser. Math. (1972), Amer. Math. Soc: Amer. Math. Soc Providence, RI) ·Zbl 0249.50011
[19]Guibas, L. J.; Stolfi, J., Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams, ACM Trans. Graphics, 4, 74-123 (1985) ·Zbl 0586.68059
[20]Harborth, H., Konvexe-Fünfecke in ebenen Punkmengen, Elem. Math., 33, 116-118 (1978) ·Zbl 0397.52005
[21]Horton, J. D., Sets with no empty convex 7-gon, Canad. Math. Bull., 26, 482-484 (1983) ·Zbl 0521.52010
[22]Knuth, D. E., (The Art of Computer Programming, Vol. I, Fundamental Algorithms (1971), Addison-Wesley: Addison-Wesley Reading, MA)
[23]Lee, D. T., Proximity and Reachability in the Plane, (Ph. D. thesis (1979), Dept. Elec. Engin., University of Illinois)
[24]Lee, D. T.; Preparata, F. P., Euclidean shortest paths in the presence of rectilinear barriers, Network, 14, 393-410 (1984) ·Zbl 0545.90098
[25]McKenna, M.; Seidel, R., Finding the optimal shadow of a convex polytope, (Proceedings, 1st ACM Syrup. on Comput. Geom. (1985)), 24-28
[26]Nievergelt, J.; Preparata, F. P., Plane-sweep algorithms for intersecting geometric figures, Comm. ACM, 25, 739-747 (1982) ·Zbl 0491.68075
[27]Preparata, F. P.; Shamos, M. I., Computational Geometry, an Introduction (1985), Springer-Verlag: Springer-Verlag New York/Berlin ·Zbl 0575.68059
[28]M.Sharir, personal communication, 1985.; M.Sharir, personal communication, 1985.
[29]R. E.Tarjan, Amortized computational complexity,SIAM J. Comput., in press.; R. E.Tarjan, Amortized computational complexity,SIAM J. Comput., in press. ·Zbl 0599.68046
[30]Welzl, W., Constructing the visibility graph for \(n\) line segments in \(O(n^2)\) time, Inform. Process. Lett., 20, 167-171 (1985) ·Zbl 0573.68036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp