Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Quantum field theory and the Jones polynomial.(English)Zbl 0667.57005

One of the problems recently proposed byM. Atiyah [Proc. Symp. Pure Math. 48, 285-299 (1988)] for experts in quantum field theory was to find an intrinsically three dimensional definition of the Jones polynomial [V. F. R. Jones, Bull. Am. Math. Soc., New Ser. 12, 103- 111 (1985;Zbl 0564.57006); Ann. Math., II. Ser. 126, 335-388 (1987;Zbl 0631.57005)] of knot theory. In this work the author considers the quantum field theory defined by the nonabelian Chern-Simons action and shows that it is exactly soluble and has important implications for three dimensional geometry and two dimensional conformal field theory. Among the geometrical implications of the \(2+1\) dimensional quantum Yang-Mills theory with a pure Chern-Simons action is a natural framework for the understanding of the Jones polynomial. In this description, the Jones polynomial can be generalized from \(S^ 3\) to arbitrary three manifolds, giving invariants of three manifolds that are computable for a surgery presentation. The work provides a penetrating insight into the conformal field theory in \(1+1\) dimensions.
Reviewer: Ch.Sharma

MSC:

57N10 Topology of general \(3\)-manifolds (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
81T17 Renormalization group methods applied to problems in quantum field theory
57R65 Surgery and handlebodies

Cite

References:

[1]Atiyah, M. F.: New invariants of three and four dimensional manifolds. In: The mathematical heritage of Hermann Weyl. Proc. Symp. Pure Math., vol.48. Wells R. (ed.). Providence, RI: American Mathematical Society 1988, pp. 285-299
[2]Donaldson, S.: An application of gauge theory to the topology of four manifolds. J. Diff. Geom.18, 269 (1983), Polynomial invariants for smooth four-manifolds. Oxford preprint ·Zbl 0507.57010
[3]Floer, A.: An instanton invariant for three manifolds. Courant Institute preprint (1987). Morse theory for fixed points of symplectic diffeomorphisms. Bull. AMS16, 279 (1987) ·Zbl 0617.53042 ·doi:10.1090/S0273-0979-1987-15517-0
[4]Witten, E.: Topological quantum field theory. Commun. Math. Phys.117, 353 (1988) ·Zbl 0656.53078 ·doi:10.1007/BF01223371
[5]Jones, V. F. R.: Index for subfactors. Invent. Math.72, 1 (1983). A polynomial invariant for links via von Neumann algebras. Bull. AMS12, 103 (1985), Hecke algebra representations of braid groups and link polynomials. Ann. Math.126, 335 (1987) ·Zbl 0508.46040 ·doi:10.1007/BF01389127
[6]Freyd, P., Yetter, D., Hoste, J., Lickorish, W. B. R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. AMS12, 239 (1985) ·Zbl 0572.57002 ·doi:10.1090/S0273-0979-1985-15361-3
[7]Kauffman, L.: State models and the Jones polynomial. Topology26, 395 (1987). Statistical mechaniscs and the Jones polynomial, to appear in the Proceedings of the July, 1986, conference on Artin’s braid group, Santa Cruz, California; An invariant of regular isotopy preprint ·Zbl 0622.57004 ·doi:10.1016/0040-9383(87)90009-7
[8]Turaev, V. G.: The Yang-Baxter equation and invariants of links. LOMI preprint E-3-87, Inv. Math.92, 527 (1988) ·Zbl 0648.57003 ·doi:10.1007/BF01393746
[9]Przytycki, J. H., Traczyk, P.: Invariants of links of conway type. Kobe J. Math.,4, 115 (1988) ·Zbl 0655.57002
[10]Birman, J.: On the Jones polynomial of closed 3-braids. Invent. Math.81, 287 (1985). ·Zbl 0588.57005 ·doi:10.1007/BF01389053
[11]Birman, J., Wenzl, H. Link polynomials and a new algebra, preprint ·Zbl 0684.57004
[12]Tsuchiya, A., Kanie, Y.: In: Conformal field theory and solvable lattice models. Adv. Stud. Pure math.16, 297 (1988); Lett. Math. Phys.13, 303 (1987) ·Zbl 0631.17010
[13]Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys.B 300, 360 (1988) ·Zbl 1180.81120 ·doi:10.1016/0550-3213(88)90603-7
[14]Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. To appear in Phys. Lett. B, Naturality in conformal field theory. To appear in Nucl. Phys. B, Classical and quantum conformal field theory. IAS preprint HEP-88/35
[15]Schroer, B.: Nucl. Phys.295, 4 (1988) K.-H. Rehren, Schroer, B.: Einstein causality and Artin braids. FU preprint (1987) ·doi:10.1016/0550-3213(88)90537-8
[16]Fröhlich, J.: Statistics of fields, the Yang-Baxter equation, and the theory of links and knots. 1987 Cargese lectures, to appear In Nonperturbative quantum field theory. New York: Plenum Press
[17]Segal, G.: Conformal field theory. Oxford preprint; and lecture at the IAMP Congress, Swansea, July, 1988
[18]Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Invent. Math.82, 307 (1985) ·Zbl 0592.53025 ·doi:10.1007/BF01388806
[19]Schwarz, A.: The partition function of degenerate quadratic functional and Ray-Singer invariants. Lett. Math. Phys.2, 247 (1978) ·Zbl 0383.70017 ·doi:10.1007/BF00406412
[20]Schonfeld, J.: A mass term for three dimensional gauge fields. Nucl. Phys.B 185, 157 (1981) ·doi:10.1016/0550-3213(81)90369-2
[21]Jackiw, R., Templeton, S.: How superrenormalizable theories cure their infrared divergences. Phys. Rev.D 23, 2291 (1981)
[22]Deser, S., Jackiw, R., Templeton, S.: Three dimensional massive gauge theories. Phys. Rev. Lett.48, 975 (1983). Deser, S., Jackiw, R., Templeton, S. Topologically massive gauge theory. Ann. Phys. NY140, 372 (1984) ·doi:10.1103/PhysRevLett.48.975
[23]Zuckerman, G.: Action principles and global geometry. In: The proceedings of the 1986 San Diego Summer Workshop, Yau, S.-T. (ed.) ·Zbl 0592.60081
[24]Polyakov, A. M.: Fermi-bose transmutations induced by gauge fields. Mod. Phys. Lett.A 3, 325 (1988)
[25]Hagen, C. R.: Ann. Phys.157, 342 (1984) ·doi:10.1016/0003-4916(84)90064-2
[26]Arovas, D., Schrieffer, R., Wilczek, F., Zee, A.: Statistical mechanics of anyons. Nucl. Phys.B 251 [FS 13], 117 (1985) ·doi:10.1016/0550-3213(85)90252-4
[27]Witten, E.: Non-Abelian bosonization in two dimensions. Commun. Math. Phys.92, 455 (1984) ·Zbl 0536.58012 ·doi:10.1007/BF01215276
[28]Ray, D., Singer, I.: Adv. Math.7, 145 (1971), Ann. Math.98 154 (1973) ·Zbl 0239.58014 ·doi:10.1016/0001-8708(71)90045-4
[29]Deser, S., Jackiw, R., Templeton, S.: In [21] ; Affleck, I., Harvey, J., Witten, E.: Nucl. Phys.B 206, 413 (1982) ·doi:10.1103/PhysRevLett.48.975
[30]Redlich, A. N.: Gauge invariance and parity conservation of three-dimensional fermions. Phys. Rev. Lett.52, 18 (1984) ·doi:10.1103/PhysRevLett.52.18
[31]Alvarez-Gaumé, L., Witten, E.: Gravitational anomalies. Nucl. Phys.B 234, 269 (1983)
[32]Alvarez-Gaumé, Della Pietra, S., Moore, G.: Anomalies and odd dimensions. Ann. Phys. (NY)163, 288 (1985) ·Zbl 0584.58049 ·doi:10.1016/0003-4916(85)90383-5
[33]Atiyah, M.F.: A note on the eta invariant (unpublished)
[34]Singer, I.M.: Families of Dirac operators with applications to Physics. Astérisque,1985, p. 323 ·Zbl 0603.58054
[35]Atiyah, M. F., Patodi, V., Singer, I.: Math. Proc. Camb. Phil. Soc.77, 43 (1975),78, 405 (1975),79, 71 (1976) ·Zbl 0297.58008 ·doi:10.1017/S0305004100049410
[36]Wilczek, F., Zee, A.: Linking numbers, spin, and statistics of solitons. Phys. Rev. Lett.51, 2250 (1983) ·doi:10.1103/PhysRevLett.51.2250
[37]Friedan, D., Shenker, S.: Nucl. Phys.B 281, 509 (1987) ·doi:10.1016/0550-3213(87)90418-4
[38]Belavin, A., Polyakov, A. M., Zamolodchikov, A.: Nucl. Phys.B (1984)
[39]Atiyah, M. F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond.A 308, 523 (1982) ·Zbl 0509.14014
[40]Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl.19, 31 (1986) ·Zbl 0603.32016 ·doi:10.1007/BF01086022
[41]Drinfeld, V.: Quantum groups. In: The Proceedings of the International Congress of Mathematicians, Berkeley 1986, Vol. 1, pp. 798-820
[42]Gepner, D., Witten, E.: String theory on group manifolds. Nucl. Phys. B278, 493 (1986) ·doi:10.1016/0550-3213(86)90051-9
[43]Kac, V. G.: Infinite dimensional Lie algebras. Cambridge: Cambridge University Press (1985) ·Zbl 0574.17010
[44]Kac, V. G., Peterson, D. H.: Adv. Math.53, 125 (1984) ·Zbl 0584.17007 ·doi:10.1016/0001-8708(84)90032-X
[45]Kac, V. G., Wakimoto, M.: Adv. Math.70, 156 (1988) ·Zbl 0661.17016 ·doi:10.1016/0001-8708(88)90055-2
[46]Witten, E.: 2+1 dimensional gravity as an exactly soluble system. IAS preprint HEP-88/32
[47]Segal, G.: Unitary representation of some infinite dimensional groups. Commun. Math. Phys.80, 301 (1981) ·Zbl 0495.22017 ·doi:10.1007/BF01208274
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp