Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The existence of regular orbits.(English)Zbl 0654.20003

Let G be a solvable group and p an odd prime. It is shown that if A is a p-subgroup of G and X is a p-chief factor of G on which A acts faithfully, then X contains a regular A-orbit, i.e., there exists \(x\in X\) such that \(C_ A(x)=1\). The result is false for \(p=2\). As a corollary, the following character-theoretic result is obtained: Let G be a solvable primitive group. Assume that F(G) is a p-group, p odd. Take \(P\in S_ p(G).Then\) \(b(P)=\max \{\psi (1)|\) \(\psi \in Irr(P)\}=| G:F(G)|_ p\).
Reviewer: A.Espuelas

MSC:

20C05 Group rings of finite groups and their modules (group-theoretic aspects)
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D60 Arithmetic and combinatorial problems involving abstract finite groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure

Cite

References:

[1]Berger, T. R.: Hall-higman type theorems, V. Pacific J. Math. 73, 1-62 (1977) ·Zbl 0412.20004
[2]Berger, T. R.: Hall-higman type theorems, VI. J. algebra 51, 416-424 (1978) ·Zbl 0377.20007
[3]Berger, T. R.: On the structure of a representation of a finite solvable group. Vorlesungen fachbereich math. Univ. essen 12 (1985) ·Zbl 0562.20002
[4]Fleischmann, P.: Finite groups with regular orbits on vector spaces. J. algebra 103, 211-215 (1986) ·Zbl 0604.20014
[5]Gow, R.: On the number of characters in a p-block of a p-solvable group. J. algebra 65, 421-426 (1980) ·Zbl 0445.20003
[6]Hall, P.; Higman, G.: On the p-length of p-soluble groups and reduction theorems for the Burnside problem. Proc. London math. Soc. (3) 6, 1-42 (1956) ·Zbl 0073.25503
[7]Hargraves, B. B.: The existence of regular orbits for nilpotent groups. J. algebra 72, 54-101 (1981) ·Zbl 0482.20004
[8]Huppert, B.; Blackburn, N.: Finite groups, II. (1982) ·Zbl 0477.20001
[9]Jones, G.: The influence of nilpotent subgroups on the nilpotent length and the derived length of a finite group. Proc. London math. Soc. (3) 49, 343-360 (1984) ·Zbl 0542.20006
[10]Turull, A.: Supersolvable automorphism groups of solvable groups. Math. Z. 183, 47-73 (1983) ·Zbl 0496.20016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp