Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Asymptotic dynamics, non-critical and critical fluctuations for a geometric long-range interacting model.(English)Zbl 0647.60106

We study the dynamics of a geometric spin system on the torus with long- range interaction. As the number of particles goes to infinity, the process converges to a deterministic, dynamical magnetization field that satisfies an Euler equation (law of large numbers). Its stable steady states are related to the limit of the equilibrium measures (Gibbs states) of the finite particle system. A related equation holds for the magnetization densities, for which the property of propagation of chaos also is established.
We prove a dynamical central limit theorem with an infinite-dimensional Ornstein-Uhlenbeck process as a limiting fluctuation process. At the critical temperature of a ferromagnetic phase transition, both a tighter quantity scaling and a time scaling is required to obtain convergence to a one-dimensional critical fluctuation process with constant magnetization fields, which has a non-Gaussian invariant distribution.
Similarly, at the phase transition to an antiferromagnetic state with frequency \(p_ 0\), the fluctuation process with critical scaling converges to a two-dimensional critical fluctuation process, which consists of fields with frequency \(p_ 0\) and has a non-Gaussian invariant distribution on these fields. Finally, we compute the critical fluctuation process in the infinite particle limit at a triple point, where a ferromagnetic and an antiferromagnetic phase transition coincide.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
81P20 Stochastic mechanics (including stochastic electrodynamics)

Cite

References:

[1]Comets, F.: Nucleation for a long range magnetic model. Ann. Inst. H. Poincaré23, 2, 135-178 (1987) ·Zbl 0633.60110
[2]Comets, F., Eisele, Th., Schatzman, M.: On secondary bifurcations for some nonlinear convolution equations. Trans. Am. Math. Soc.296, 2, 661-702 (1986) ·Zbl 0597.45016 ·doi:10.1090/S0002-9947-1986-0846602-7
[3]Dawson, D. A.: Critical dynamics and fluctuations for a meanfield model of cooperative behavior. J. Stat. Phys.31, 29-85 (1983) ·doi:10.1007/BF01010922
[4]Dawson, D. A., G?rtner, J.: Long-time fluctuations of weakly interacting diffusions, preprint
[5]Dawson, D. A., G?rtner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, preprint 1986
[6]Eisele, Th.: Equilibrium and nonequilibrium theory of a geometric long-range spin glass, Ecole d’été de Physique théorique. Les Houches 1984. Osterwaldet, K., Stora, R.: (eds). Amsterdam Oxford, New York: Elsevier Science 1986
[7]Eisele, Th., Ellis, R. S.: Symmetry breaking and random waves for magnetic systems on a circle Z. Wahrsch. V. G.63, 297-348 (1983) ·Zbl 0494.60097 ·doi:10.1007/BF00542534
[8]Ellis, R. S., Monroe, J. L., Newman, C. M.: The GHS and other correlation inequalities for a classe of even ferromagnets. Commun. Math. Phys.46, 167-182 (1976) ·doi:10.1007/BF01608495
[9]Ellis, R. S., Newman, C. M., Rosen, J. S.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Geb.51, 153-169 (1980) ·Zbl 0404.60096 ·doi:10.1007/BF00536186
[10]Fritz, J.: The Euler equation for the stochastic dynamics of a one-dimensional continuous spin system. Preprint 1986
[11]Glauber, R. J.: Time-dependent statistics of the Ising model. J. Math. Phys.4, 294 (1963) ·Zbl 0145.24003 ·doi:10.1063/1.1703954
[12]Hida, T.: Brownian Motion. Berlin, Heidelberg, New York, 1980 ·Zbl 0423.60063
[13]Holley, R. A., Stroock, D. W.: Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Res. Inst. Math. Sci. Kyoto14, 741-788 (1978) ·Zbl 0412.60065 ·doi:10.2977/prims/1195188837
[14]Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam: North-Holland 1981 ·Zbl 0495.60005
[15]Ito, K.: Foundations of stochastic differential equations in infinite dimensional spaces. Philadelphia: Soc. Ind. Appl. Math. 1984.
[16]Jacod, J.: Théorèmes limite pour les processus, Ecole d’été de probabilités de St Flour XIII-1983. Lecture Notes in Mathematics, Vol. 1117, Berlin, Heidelberg, New York: Springer 1985
[17]Kipnis, C.: Processus de champ moyen. Stochastics5, 93-106 (1981) ·Zbl 0462.60099
[18]McKean, H. P.: Propagation of chaos for a class of nonlinear parabolic equations, Lect. Ser. Diff. Eq.2, 41-57 New York: Van Nostrand Reinhold 1969 ·Zbl 0181.44401
[19]McKean, H. P.: Fluctuations in the kinetic theory of gases. Commun. Pure Appl. Math.28, 435-455 (1975) ·doi:10.1002/cpa.3160280402
[20]Mitoma, I.: Tightness of probabilities on 567-1([0, 1], 567-2) and 567-3([0, 1], 567-4). Ann. Prob.11, 989-999 (1983) ·Zbl 0527.60004 ·doi:10.1214/aop/1176993447
[21]Nagasawa, M., Tanaka, H.: Propagation of chaos for diffusing Particles of two types with singular mean field interaction. Prob. Th. Rel. F.71, 69-83 (1986) ·Zbl 0604.60079 ·doi:10.1007/BF00366273
[22]Oelschl?ger, K.: A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Prob.12, 458-479 (1984) ·Zbl 0544.60097 ·doi:10.1214/aop/1176993301
[23]Shiga, T., Tanaka, H.: Central limit theorems for a system of Markovian particles with mean field interactions. Z. Wahrsch. Verw. Geb.69, 439-459 (1985) ·Zbl 0607.60095 ·doi:10.1007/BF00532743
[24]Strichartz, R. S.: Multipliers on fractional Sobolev Spaces. J. Math. Mech.16, 1031-1060 (1967) ·Zbl 0145.38301
[25]Sznitman, A. S.: Nonlinear reflecting dffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal.56, 311-336 (1984) ·Zbl 0547.60080 ·doi:10.1016/0022-1236(84)90080-6
[26]Tanaka, H. Histsuda, M.: Central limit theorem for a simple diffusion model of interacting particles. Hiroshima Math. J.11, 415-423 (1981) ·Zbl 0469.60097
[27]Spitzer, F.: In: St Flour 73, Lecture Notes in Mathematics, Vol. 390. Berlin, Heidelberg, New York: Springer 1974
[28]Meyer, Y.: In Séminarie Bourbaki 1979-1980,n o560 (1980)
[29]Bers, L., John, F., Schechter, M.: Partial differential equations. New York: Intersciences 1964 ·Zbl 0126.00207
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp