60K35 | Interacting random processes; statistical mechanics type models; percolation theory |
81P20 | Stochastic mechanics (including stochastic electrodynamics) |
[1] | Comets, F.: Nucleation for a long range magnetic model. Ann. Inst. H. Poincaré23, 2, 135-178 (1987) ·Zbl 0633.60110 |
[2] | Comets, F., Eisele, Th., Schatzman, M.: On secondary bifurcations for some nonlinear convolution equations. Trans. Am. Math. Soc.296, 2, 661-702 (1986) ·Zbl 0597.45016 ·doi:10.1090/S0002-9947-1986-0846602-7 |
[3] | Dawson, D. A.: Critical dynamics and fluctuations for a meanfield model of cooperative behavior. J. Stat. Phys.31, 29-85 (1983) ·doi:10.1007/BF01010922 |
[4] | Dawson, D. A., G?rtner, J.: Long-time fluctuations of weakly interacting diffusions, preprint |
[5] | Dawson, D. A., G?rtner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, preprint 1986 |
[6] | Eisele, Th.: Equilibrium and nonequilibrium theory of a geometric long-range spin glass, Ecole d’été de Physique théorique. Les Houches 1984. Osterwaldet, K., Stora, R.: (eds). Amsterdam Oxford, New York: Elsevier Science 1986 |
[7] | Eisele, Th., Ellis, R. S.: Symmetry breaking and random waves for magnetic systems on a circle Z. Wahrsch. V. G.63, 297-348 (1983) ·Zbl 0494.60097 ·doi:10.1007/BF00542534 |
[8] | Ellis, R. S., Monroe, J. L., Newman, C. M.: The GHS and other correlation inequalities for a classe of even ferromagnets. Commun. Math. Phys.46, 167-182 (1976) ·doi:10.1007/BF01608495 |
[9] | Ellis, R. S., Newman, C. M., Rosen, J. S.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Geb.51, 153-169 (1980) ·Zbl 0404.60096 ·doi:10.1007/BF00536186 |
[10] | Fritz, J.: The Euler equation for the stochastic dynamics of a one-dimensional continuous spin system. Preprint 1986 |
[11] | Glauber, R. J.: Time-dependent statistics of the Ising model. J. Math. Phys.4, 294 (1963) ·Zbl 0145.24003 ·doi:10.1063/1.1703954 |
[12] | Hida, T.: Brownian Motion. Berlin, Heidelberg, New York, 1980 ·Zbl 0423.60063 |
[13] | Holley, R. A., Stroock, D. W.: Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Res. Inst. Math. Sci. Kyoto14, 741-788 (1978) ·Zbl 0412.60065 ·doi:10.2977/prims/1195188837 |
[14] | Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam: North-Holland 1981 ·Zbl 0495.60005 |
[15] | Ito, K.: Foundations of stochastic differential equations in infinite dimensional spaces. Philadelphia: Soc. Ind. Appl. Math. 1984. |
[16] | Jacod, J.: Théorèmes limite pour les processus, Ecole d’été de probabilités de St Flour XIII-1983. Lecture Notes in Mathematics, Vol. 1117, Berlin, Heidelberg, New York: Springer 1985 |
[17] | Kipnis, C.: Processus de champ moyen. Stochastics5, 93-106 (1981) ·Zbl 0462.60099 |
[18] | McKean, H. P.: Propagation of chaos for a class of nonlinear parabolic equations, Lect. Ser. Diff. Eq.2, 41-57 New York: Van Nostrand Reinhold 1969 ·Zbl 0181.44401 |
[19] | McKean, H. P.: Fluctuations in the kinetic theory of gases. Commun. Pure Appl. Math.28, 435-455 (1975) ·doi:10.1002/cpa.3160280402 |
[20] | Mitoma, I.: Tightness of probabilities on 567-1([0, 1], 567-2) and 567-3([0, 1], 567-4). Ann. Prob.11, 989-999 (1983) ·Zbl 0527.60004 ·doi:10.1214/aop/1176993447 |
[21] | Nagasawa, M., Tanaka, H.: Propagation of chaos for diffusing Particles of two types with singular mean field interaction. Prob. Th. Rel. F.71, 69-83 (1986) ·Zbl 0604.60079 ·doi:10.1007/BF00366273 |
[22] | Oelschl?ger, K.: A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Prob.12, 458-479 (1984) ·Zbl 0544.60097 ·doi:10.1214/aop/1176993301 |
[23] | Shiga, T., Tanaka, H.: Central limit theorems for a system of Markovian particles with mean field interactions. Z. Wahrsch. Verw. Geb.69, 439-459 (1985) ·Zbl 0607.60095 ·doi:10.1007/BF00532743 |
[24] | Strichartz, R. S.: Multipliers on fractional Sobolev Spaces. J. Math. Mech.16, 1031-1060 (1967) ·Zbl 0145.38301 |
[25] | Sznitman, A. S.: Nonlinear reflecting dffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal.56, 311-336 (1984) ·Zbl 0547.60080 ·doi:10.1016/0022-1236(84)90080-6 |
[26] | Tanaka, H. Histsuda, M.: Central limit theorem for a simple diffusion model of interacting particles. Hiroshima Math. J.11, 415-423 (1981) ·Zbl 0469.60097 |
[27] | Spitzer, F.: In: St Flour 73, Lecture Notes in Mathematics, Vol. 390. Berlin, Heidelberg, New York: Springer 1974 |
[28] | Meyer, Y.: In Séminarie Bourbaki 1979-1980,n o560 (1980) |
[29] | Bers, L., John, F., Schechter, M.: Partial differential equations. New York: Intersciences 1964 ·Zbl 0126.00207 |