90B05 | Inventory, storage, reservoirs |
90C90 | Applications of mathematical programming |
65K05 | Numerical mathematical programming methods |
[1] | R.D. Armstrong, ”A primal simplex algorithm to solve a rectilinear distance facility location problem,”Naval Research Logistics Quarterly 24 (1977) 619–626. ·Zbl 0372.90080 ·doi:10.1002/nav.3800240409 |
[2] | L. Cooper and I.N. Katz, ”The Weber problem revisited,”Computers and Mathematics with Applications 7 (1981) 225–234. ·Zbl 0457.65044 ·doi:10.1016/0898-1221(81)90082-1 |
[3] | P.H. Calamai and A.R. Conn, ”A stable algorithm for solving the multifacility location problem involving Euclidean distances,”SIAM Journal on Scientific and Statistical Computing 1 (1980) 512–526. ·Zbl 0469.65040 ·doi:10.1137/0901037 |
[4] | P.H. Calamai and A.R. Conn, ”A second order method for solving the continuous multifacility location problem,” in: G.A. Watson, ed.,Numerical Analysis: Proceedings of the Ninth Biennial Conference. Dundee, Scotland, Lecture Notes in Mathematics 912 (Springer-Verlag, Berlin, Heidelberg and New York, 1982), pp. 1–25. ·Zbl 0485.65013 |
[5] | F. Cordellier and J.C. Fiorot, ”On the Fermat-Weber problem with convex cost functions,”Mathematical Programming 14 (1978) 295–311. ·Zbl 0374.90057 ·doi:10.1007/BF01588972 |
[6] | A. Dax, ”The use of Newton’s method for solving Euclidean multifacility location problems,” Tech. Report. Hydrological Service (Jerusalem, 1985). |
[7] | P.D. Dowling and R.F. Love, ”Bounding methods for facilities location algorithms,” Research and Working Paper Series No. 219, McMaster University (Hamilton, Ontario, 1984). ·Zbl 0614.90052 |
[8] | P.D. Dowling and R.F. Love, ”An evaluation of the dual as a lower bound in facilities location problems,” Research and Working Paper Series No. 236, McMaster University (Hamilton, Ontario, 1985). |
[9] | R. Durier, ”On efficient points and Fermat-Weber problem,” Working Paper, Université de Bourgogne, (Dijon, France, 1984). |
[10] | R. Durier, ”Weighting factor results in vector optimization,” Working Paper, Université de Bourgogne (Dijon, France, 1984). |
[11] | R. Durier and C. Michelot, ”Geometrical properties of the Fermat-Weber problem,”European Journal of Operational Research 20 (1985) 332–343. ·Zbl 0564.90013 ·doi:10.1016/0377-2217(85)90006-2 |
[12] | R. Durier and C. Michelot, ”Sets of efficient points in a normed space,”Journal of Mathematical Analysis and Applications 117 (1986), 506–528. ·Zbl 0605.49020 ·doi:10.1016/0022-247X(86)90237-4 |
[13] | U. Eckhardt, ”Theorems on the dimension of convex sets,”Linear Algebra and its Applications 12 (1975) 63–76. ·Zbl 0317.52004 ·doi:10.1016/0024-3795(75)90127-5 |
[14] | D.J. Elzinga and D.W. Hearn, ”On stopping rules for facilities location algorithms,”IIE Transactions 15 (1983) 81–83. ·doi:10.1080/05695558308974616 |
[15] | R.L. Francis and J.M. Goldstein, ”Location theory: A selective bibliography,”Operations Research 22 (1974) 400–410. ·Zbl 0274.90028 ·doi:10.1287/opre.22.2.400 |
[16] | R.L. Francis and J.A. White,Facility Layout and Location: An Analytical Approach (Prentice-Hall, Englewood Cliffs, NJ, 1974). |
[17] | I.N. Katz, ”Local convergence in Fermat’s problem,”Mathematical Programming 6 (1974), 89–104. ·Zbl 0291.90069 ·doi:10.1007/BF01580224 |
[18] | H.W. Kuhn, ”A note on Fermat’s problem,”Mathematical Programming 4 (1973) 98–107. ·Zbl 0255.90063 ·doi:10.1007/BF01584648 |
[19] | H.W. Kuhn and R.E. Kuenne, ”An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics”,Journal of Regional Science 4 (1962) 21–23. ·doi:10.1111/j.1467-9787.1962.tb00902.x |
[20] | R.F. Love and W.Y. Yeong, ”A stopping rule for facilities location algorithms,”AIIE Transactions 13 (1981) 357–362. |
[21] | L.M. Ostresch, ”On the convergence of a class of iterative methods for solving the Weber location problem,”Operations Research 26 (1978) 597–609. ·Zbl 0396.90073 ·doi:10.1287/opre.26.4.597 |
[22] | L.M. Ostresh, ”Convergence and descent in the Fermat location problem,”Transportation Science 12 (1978) 153–164. ·doi:10.1287/trsc.12.2.153 |
[23] | M.L. Overton, ”A quadratically convergent method for minimizing a sum of Euclidean norms,”Mathematical Programming 27 (1983) 34–63. ·Zbl 0536.65053 ·doi:10.1007/BF02591963 |
[24] | A. Planchart and A.P. Hurter, ”An efficient algorithm for the solution of Weber problem with mixed norms,”SIAM Journal on Control 13 (1975) 650–665. ·doi:10.1137/0313036 |
[25] | F. Plastria, ”Continuous location problems solved by cutting planes,” Working Paper, Vrije Universiteit brussels, (Bruxelles, 1982). |
[26] | R.T. RockafellarConvex Analysis, (Princeton University Press, Princeton, NJ, 1970). |
[27] | R.T. Rockafellar, ”Monotone operators and the proximal point algorithm,”SIAM Journal on Control and Optimization 14 (1976) 877–898. ·Zbl 0358.90053 ·doi:10.1137/0314056 |
[28] | J.E. Spingarn, ”Partial inverse of a monotone operator,”Applied Mathematics and Optimization 10 (1983) 247–265. ·Zbl 0524.90072 ·doi:10.1007/BF01448388 |
[29] | J.E. Spingarn, ”A primal-dual projection method for solving systems of linear inequalities,”Linear Algebra and its Applications 65 (1985) 45–62. ·Zbl 0564.65044 ·doi:10.1016/0024-3795(85)90086-2 |
[30] | J.E. Ward and R.E. Wendell, ”Using block norms for location modeling,”Operations Research 33 (1985) 1074–1090. ·Zbl 0582.90026 ·doi:10.1287/opre.33.5.1074 |
[31] | E. Weiszfeld, ”Sur le point pour lequel la somme des distances den points donnés est minimum,”The Tôhoku Mathematical Journal 43 (1937) 355–386. ·JFM 63.0583.01 |
[32] | R.E. Wendell and E.L. Peterson, ”A dual approach for obtaining lower bounds to the Weber problem,”Journal of Regional Science 24 (1984) 219–228. ·doi:10.1111/j.1467-9787.1984.tb01033.x |
[33] | C. Witzgall, ”Optimal location of a central facility: Mathematical models and Concepts,” National Bureau of Standards, Report 8388 (Washington, 1964). |