Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Second order necessary and sufficient conditions for convex composite NDO.(English)Zbl 0641.49013

The author studies the problem of minimizing functions of the form \(F:=h\circ f\) where \(h: {\mathbb{R}}^ m\to {\mathbb{R}}\) is a finite-valued convex function and \(f: {\mathbb{R}}^ n\to {\mathbb{R}}^ m\) is continuously differentiable. He extends the second-order necessary and sufficient optimality conditions obtained byA. D. Ioffe [SIAM J. Control Optimization 17, 266-288 (1979;Zbl 0417.49029)] for the particular case in which h is sublinear, to arbitrary convex h. A discussion of the second-order regularity conditions is also included.
Reviewer: M.Studniarski

MSC:

49K10 Optimality conditions for free problems in two or more independent variables
26B25 Convexity of real functions of several variables, generalizations
90C25 Convex programming
90C30 Nonlinear programming

Citations:

Zbl 0417.49029

Cite

References:

[1]D.H. Anderson and M.R. Osborne, ”Discrete, nonlinear approximation problems in polyhedral norms,”Numerische Mathematik 28 (1977) 143–156. ·Zbl 0342.65004 ·doi:10.1007/BF01394449
[2]B.M. Bell,Nonsmooth optimization by successive quadratic programming (Dissertation, Department of Mathematics, University of Washington, USA, 1984).
[3]A. Ben-Tal and J. Zowe, ”Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems,”Mathematical Programming 24 (1982) 70–91. ·Zbl 0488.90059 ·doi:10.1007/BF01585095
[4]J.V. Burke and S.-P. Han, ”A Gauss-Newton approach to solving generalized inequalities,”Mathematics of Operations Research 11 (1986) 632–643. ·Zbl 0623.90072 ·doi:10.1287/moor.11.4.632
[5]J.V. Burke, ”Descent methods for composite nondifferentiable optimization problems,”Mathematical Programming 33 (1985) 260–279. ·Zbl 0581.90084 ·doi:10.1007/BF01584377
[6]R.W. Chaney, ”Second order necessary conditions in semi-smooth optimization,” Preprint, Dept. of Math., Western Washington University, Bellingham, WA 98225, USA (1986).
[7]R.W. Chaney, ”Second order sufficient conditions in nonsmooth optimization,” Preprint, Western Washington University, Bellingham, WA 98225, USA (1986). ·Zbl 0671.49013
[8]F.H. Clarke,Optimization and Nonsmooth Analysis (Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley and Sons, 1983). ·Zbl 0582.49001
[9]R. Fletcher,Practical Methods for Optimization, Vol. II. Constrained Optimization (Wiley, New York, 1981). ·Zbl 0474.65043
[10]R. Fletcher, ”A model algorithm for composite nondifferentiable optimization problems,”Mathematical Programming Study 17 (1982) 67–76. ·Zbl 0478.90063
[11]A.D. Ioffe, ”Necessary and sufficient conditions for a local minimum. 1: A reduction theorem and first order conditions,”SIAM Journal Control and Optimization 17 (1979) 245–250. ·Zbl 0417.49027 ·doi:10.1137/0317019
[12]A.D. Ioffe, ”Necessary and sufficient conditions for a local minimum, 2: Conditions of Levitin-Miljutin-Osmolovskii Type,”SIAM Journal Control and Optimization 17 (1979) 251–265. ·Zbl 0417.49028 ·doi:10.1137/0317020
[13]A.D. Ioffe, ”Necessary and sufficient conditions for a local minimum. 3: Second order conditions and augmented duality,”SIAM Journal Control and Optimization 17 (1979) 266–288. ·Zbl 0417.49029 ·doi:10.1137/0317021
[14]K. Madsen,Minimization of Nonlinear Approximation Functions (Dissertation, Institute for Numerical Analysis, Technical University of Denmark, Lyngby, Denmark, 1985).
[15]M.R. Osborne, ”Algorithms for nonlinear approximation,” in: C.T.H. Baker and C. Phillips, eds.,The Numerical Solution of Nonlinear Problems (Clarendon Press, Oxford, 1981) pp. 270–286.
[16]M.J.D. Powell, ”General algorithms for discrete nonlinear approximation calculation,” in: C.K. Chui, L.L. Schumaker, and J.D. Ward, eds.,Approximation Theory IV, Academic Press, NY (1983) 187–218.
[17]M.J.D. Powell, ”On the global convergence of trust-region algorithms for unconstrained minimization,”Mathematical Programming 29 (1984) 297–303. ·Zbl 0569.90069 ·doi:10.1007/BF02591998
[18]R.T. Rockafellar, ”Marginal values and second-order necessary conditions for optimality,”Mathematical Programming 26 (1983) 245–286. ·Zbl 0519.90072 ·doi:10.1007/BF02591866
[19]R.T. Rockafellar,Convex Analysis (Princeton University Press, 1970). ·Zbl 0193.18401
[20]R.S. Womersley, ”Optimality conditions for piecewise smooth functions,” Mathematical Programming Study 17 (1982) 13–27. ·Zbl 0478.90059
[21]R.S. Womersley, ”Local properties of algorithms for minimizing nonsmooth composite functions,”Mathematical Programming 32 (1985) 69–89. ·Zbl 0571.90084 ·doi:10.1007/BF01585659
[22]Y. Yuan, ”Global convergence of trust region algorithms for nonsmooth optimization,” Report DAMTP (1983), Cambridge University, Cambridge, England.
[23]Y. Yuan, ”Some properties of trust-region algorithms for non-smooth optimization,” Report DAMTP (1983), Cambridge University, Cambridge, England.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp