49K10 | Optimality conditions for free problems in two or more independent variables |
26B25 | Convexity of real functions of several variables, generalizations |
90C25 | Convex programming |
90C30 | Nonlinear programming |
[1] | D.H. Anderson and M.R. Osborne, ”Discrete, nonlinear approximation problems in polyhedral norms,”Numerische Mathematik 28 (1977) 143–156. ·Zbl 0342.65004 ·doi:10.1007/BF01394449 |
[2] | B.M. Bell,Nonsmooth optimization by successive quadratic programming (Dissertation, Department of Mathematics, University of Washington, USA, 1984). |
[3] | A. Ben-Tal and J. Zowe, ”Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems,”Mathematical Programming 24 (1982) 70–91. ·Zbl 0488.90059 ·doi:10.1007/BF01585095 |
[4] | J.V. Burke and S.-P. Han, ”A Gauss-Newton approach to solving generalized inequalities,”Mathematics of Operations Research 11 (1986) 632–643. ·Zbl 0623.90072 ·doi:10.1287/moor.11.4.632 |
[5] | J.V. Burke, ”Descent methods for composite nondifferentiable optimization problems,”Mathematical Programming 33 (1985) 260–279. ·Zbl 0581.90084 ·doi:10.1007/BF01584377 |
[6] | R.W. Chaney, ”Second order necessary conditions in semi-smooth optimization,” Preprint, Dept. of Math., Western Washington University, Bellingham, WA 98225, USA (1986). |
[7] | R.W. Chaney, ”Second order sufficient conditions in nonsmooth optimization,” Preprint, Western Washington University, Bellingham, WA 98225, USA (1986). ·Zbl 0671.49013 |
[8] | F.H. Clarke,Optimization and Nonsmooth Analysis (Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley and Sons, 1983). ·Zbl 0582.49001 |
[9] | R. Fletcher,Practical Methods for Optimization, Vol. II. Constrained Optimization (Wiley, New York, 1981). ·Zbl 0474.65043 |
[10] | R. Fletcher, ”A model algorithm for composite nondifferentiable optimization problems,”Mathematical Programming Study 17 (1982) 67–76. ·Zbl 0478.90063 |
[11] | A.D. Ioffe, ”Necessary and sufficient conditions for a local minimum. 1: A reduction theorem and first order conditions,”SIAM Journal Control and Optimization 17 (1979) 245–250. ·Zbl 0417.49027 ·doi:10.1137/0317019 |
[12] | A.D. Ioffe, ”Necessary and sufficient conditions for a local minimum, 2: Conditions of Levitin-Miljutin-Osmolovskii Type,”SIAM Journal Control and Optimization 17 (1979) 251–265. ·Zbl 0417.49028 ·doi:10.1137/0317020 |
[13] | A.D. Ioffe, ”Necessary and sufficient conditions for a local minimum. 3: Second order conditions and augmented duality,”SIAM Journal Control and Optimization 17 (1979) 266–288. ·Zbl 0417.49029 ·doi:10.1137/0317021 |
[14] | K. Madsen,Minimization of Nonlinear Approximation Functions (Dissertation, Institute for Numerical Analysis, Technical University of Denmark, Lyngby, Denmark, 1985). |
[15] | M.R. Osborne, ”Algorithms for nonlinear approximation,” in: C.T.H. Baker and C. Phillips, eds.,The Numerical Solution of Nonlinear Problems (Clarendon Press, Oxford, 1981) pp. 270–286. |
[16] | M.J.D. Powell, ”General algorithms for discrete nonlinear approximation calculation,” in: C.K. Chui, L.L. Schumaker, and J.D. Ward, eds.,Approximation Theory IV, Academic Press, NY (1983) 187–218. |
[17] | M.J.D. Powell, ”On the global convergence of trust-region algorithms for unconstrained minimization,”Mathematical Programming 29 (1984) 297–303. ·Zbl 0569.90069 ·doi:10.1007/BF02591998 |
[18] | R.T. Rockafellar, ”Marginal values and second-order necessary conditions for optimality,”Mathematical Programming 26 (1983) 245–286. ·Zbl 0519.90072 ·doi:10.1007/BF02591866 |
[19] | R.T. Rockafellar,Convex Analysis (Princeton University Press, 1970). ·Zbl 0193.18401 |
[20] | R.S. Womersley, ”Optimality conditions for piecewise smooth functions,” Mathematical Programming Study 17 (1982) 13–27. ·Zbl 0478.90059 |
[21] | R.S. Womersley, ”Local properties of algorithms for minimizing nonsmooth composite functions,”Mathematical Programming 32 (1985) 69–89. ·Zbl 0571.90084 ·doi:10.1007/BF01585659 |
[22] | Y. Yuan, ”Global convergence of trust region algorithms for nonsmooth optimization,” Report DAMTP (1983), Cambridge University, Cambridge, England. |
[23] | Y. Yuan, ”Some properties of trust-region algorithms for non-smooth optimization,” Report DAMTP (1983), Cambridge University, Cambridge, England. |