Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Recovering optimal dual solutions in Karmarkar’s polynomial algorithm for linear programming.(English)Zbl 0639.90062

This paper presents a “standard form” variant of Karmarkar’s algorithm for linear programming. The techniques of using duality and cutting objective are combined in this variant to maintain polynomial-time complexity and to bypass the difficulties found in Karmarkar’s original algorithm. The variant works with problems in standard form and simultaneously generates sequences of primal and dual feasible solutions whose objective function values converge to the unknown optimal value. Some computational results are also reported.

MSC:

90C05 Linear programming
65K05 Numerical mathematical programming methods
68Q25 Analysis of algorithms and problem complexity

Cite

References:

[1]K.M. Anstreicher, ”A monotonic projective algorithm for fractional linear programming”,Algorithmica 1 (1986) 483–498. ·Zbl 0625.90088 ·doi:10.1007/BF01840458
[2]T.M. Cavalier and A.L. Soyster, ”Some computation experience and a modification of the Karmarkar algorithm”, ISME Working Paper 85-105, Dept. of Industrial and Management Systems Engineering, The Pennsylvania State University (PA, 1985).
[3]G.B. Dantzig,Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963).
[4]D.M. Gay, ”A variant of Karmarkar’s linear programming algorithm for problems in standard form”,Mathematical Programming 37 (1987) 81–90. ·Zbl 0629.90056 ·doi:10.1007/BF02591685
[5]P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin and M.H. Wright, ”On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method”,Mathematical Programming 36 (1986) 183–209. ·Zbl 0624.90062 ·doi:10.1007/BF02592025
[6]C.C. Gonzaga, ”An algorithm for solving linear programming problems inO(n 3 L) operations”, Memorandum No. UCB/ERL M87/10, Electronic Research Laboratory, University of California, Berkeley (CA, 1987).
[7]M Iri and H. Imai, ”A multiplicative barrier function method for linear programming”,Algorithmica 1 (1986) 455–482. ·Zbl 0641.90048 ·doi:10.1007/BF01840457
[8]N. Karmarkar, ”A new polynomial-time algorithm for linear programming”, manuscript, Mathematical Science Division, AT&T Bell Laboratories, (NJ, 1984). ·Zbl 0557.90065
[9]N. Karkarmar, ”A new polynomial-time algorithm for linear programming”,Combinatorica 4 (1984) 373–395. ·Zbl 0557.90065 ·doi:10.1007/BF02579150
[10]N. Karmarkar, ”Further developments in the new polynomial-time algorithm for linear programming”, Presentation at the12th Mathematical Programming Symposium (Massachusetts Institute of Technology, MA, 1985).
[11]K.O. Kortanek and M. Shi, ”Convergence results and numerical experiments on a linear programming hybrid algorithm”, to appear in theEuropean Journal of Operational Research, Dept. of Mathematics, Carnegie Mellon University (PA, 1985).
[12]I.J. Lustig ”A practical approach to karmarkar’s algorithm”, Technical Report SOL 85-5, Dept. of Operations Research, Stanford University (CA, 1985).
[13]J. Renegar, ”A polynomial-time algorithm, based on Newton’s method, for linear programming”, Report MSRI 07118-86, Mathematical Sciences Research Institute, University of California, Berkeley (CA, 1986). ·Zbl 0654.90050
[14]M.J. Todd and B.P. Burell, ”An extension of Karmarkar’s algorithm for linear programming using dual variables”,Algorithmica 1 (1986) 409–424. ·Zbl 0621.90048 ·doi:10.1007/BF01840455
[15]P.M. Vaidya, ”An algorithm for linear programming which requires O(((m+n)n 2+(m+n)1.5 n)L) arithmetic operations”, manuscript, AT&T Bell Laboratories (NJ, 1987). ·Zbl 0708.90047
[16]R.J. Vanderbei, M.S. Meketon and B.A. Freedman, ”On a modification of Karmarkar’s linear programming algorithm”,Algorithmica 1 (1986) 395–407. ·Zbl 0626.90056 ·doi:10.1007/BF01840454
[17]Y. Ye, ”K-projection and cutting-objective method for linear programming”, Presentation at the12th Mathematical Programming Symposium (Massachusetts Institute of Technology, MA, 1985).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp