90C05 | Linear programming |
65K05 | Numerical mathematical programming methods |
68Q25 | Analysis of algorithms and problem complexity |
[1] | K.M. Anstreicher, ”A monotonic projective algorithm for fractional linear programming”,Algorithmica 1 (1986) 483–498. ·Zbl 0625.90088 ·doi:10.1007/BF01840458 |
[2] | T.M. Cavalier and A.L. Soyster, ”Some computation experience and a modification of the Karmarkar algorithm”, ISME Working Paper 85-105, Dept. of Industrial and Management Systems Engineering, The Pennsylvania State University (PA, 1985). |
[3] | G.B. Dantzig,Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963). |
[4] | D.M. Gay, ”A variant of Karmarkar’s linear programming algorithm for problems in standard form”,Mathematical Programming 37 (1987) 81–90. ·Zbl 0629.90056 ·doi:10.1007/BF02591685 |
[5] | P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin and M.H. Wright, ”On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method”,Mathematical Programming 36 (1986) 183–209. ·Zbl 0624.90062 ·doi:10.1007/BF02592025 |
[6] | C.C. Gonzaga, ”An algorithm for solving linear programming problems inO(n 3 L) operations”, Memorandum No. UCB/ERL M87/10, Electronic Research Laboratory, University of California, Berkeley (CA, 1987). |
[7] | M Iri and H. Imai, ”A multiplicative barrier function method for linear programming”,Algorithmica 1 (1986) 455–482. ·Zbl 0641.90048 ·doi:10.1007/BF01840457 |
[8] | N. Karmarkar, ”A new polynomial-time algorithm for linear programming”, manuscript, Mathematical Science Division, AT&T Bell Laboratories, (NJ, 1984). ·Zbl 0557.90065 |
[9] | N. Karkarmar, ”A new polynomial-time algorithm for linear programming”,Combinatorica 4 (1984) 373–395. ·Zbl 0557.90065 ·doi:10.1007/BF02579150 |
[10] | N. Karmarkar, ”Further developments in the new polynomial-time algorithm for linear programming”, Presentation at the12th Mathematical Programming Symposium (Massachusetts Institute of Technology, MA, 1985). |
[11] | K.O. Kortanek and M. Shi, ”Convergence results and numerical experiments on a linear programming hybrid algorithm”, to appear in theEuropean Journal of Operational Research, Dept. of Mathematics, Carnegie Mellon University (PA, 1985). |
[12] | I.J. Lustig ”A practical approach to karmarkar’s algorithm”, Technical Report SOL 85-5, Dept. of Operations Research, Stanford University (CA, 1985). |
[13] | J. Renegar, ”A polynomial-time algorithm, based on Newton’s method, for linear programming”, Report MSRI 07118-86, Mathematical Sciences Research Institute, University of California, Berkeley (CA, 1986). ·Zbl 0654.90050 |
[14] | M.J. Todd and B.P. Burell, ”An extension of Karmarkar’s algorithm for linear programming using dual variables”,Algorithmica 1 (1986) 409–424. ·Zbl 0621.90048 ·doi:10.1007/BF01840455 |
[15] | P.M. Vaidya, ”An algorithm for linear programming which requires O(((m+n)n 2+(m+n)1.5 n)L) arithmetic operations”, manuscript, AT&T Bell Laboratories (NJ, 1987). ·Zbl 0708.90047 |
[16] | R.J. Vanderbei, M.S. Meketon and B.A. Freedman, ”On a modification of Karmarkar’s linear programming algorithm”,Algorithmica 1 (1986) 395–407. ·Zbl 0626.90056 ·doi:10.1007/BF01840454 |
[17] | Y. Ye, ”K-projection and cutting-objective method for linear programming”, Presentation at the12th Mathematical Programming Symposium (Massachusetts Institute of Technology, MA, 1985). |