90C11 | Mixed integer programming |
49M27 | Decomposition methods |
65K05 | Numerical mathematical programming methods |
[1] | O. Bilde and J. Krarup, ”Bestemmelse af optimal beliggenhed af produktionssteder” Research Report, IMSOR, The Technical University of Denmark (1967). |
[2] | O. Bilde and J. Krarup, ”Sharp Lower Bounds and Efficient Algorithms for the Simple Plant Location Problem,”Annals of Discrete Mathematics 1 (1977) 79–97. ·Zbl 0364.90068 ·doi:10.1016/S0167-5060(08)70728-3 |
[3] | M.E. Dyer, ”Calculating Surrogate Constraints,”Mathematical Programming 19 (1980) 255–278. ·Zbl 0464.90067 ·doi:10.1007/BF01581647 |
[4] | D. Erlenkotter, ”A Dual-Based Procedure for Uncapacitated Facility Location,”Operations Research 26 (1978) 992–1009. ·Zbl 0422.90053 ·doi:10.1287/opre.26.6.992 |
[5] | M.L. Fisher, R. Jaikumar and L. Van Wassenhove, ”A Multiplier Adjustment Method for the Generalized Assignment Problem,”Management Science 32 (1986) 1095–1103. ·Zbl 0626.90036 ·doi:10.1287/mnsc.32.9.1095 |
[6] | A. Frank, ”A Weighted Matroid Intersection Algorithm,”Journal of Algorithms 2 (1981) 328–336. ·Zbl 0484.05025 ·doi:10.1016/0196-6774(81)90032-8 |
[7] | B. Gavish and H. Pirkul, ”Efficient Algorithms for Solving Multiconstraint Zero-One Knapsack Problems to Optimality,”Mathematical Programming 31 (1985) 78–105. ·Zbl 0571.90065 ·doi:10.1007/BF02591863 |
[8] | A. Geoffrion, ”Lagrangean Relaxation and its Uses in Integer Programming,”Mathematical Programming Study 2 (1974) 82–114. ·Zbl 0395.90056 |
[9] | F. Glover and J. Mulvey, ”The Equivalence of the 0–1 Integer Programming Problem to Discrete Generalized and Pure Network Models,” Report HBS 75-46, Harvard University (1975), alsoOperations Research 28 (1980) 829–933. ·Zbl 0443.90064 |
[10] | F. Glover and D. Klingman, ”Layering Strategies for Creating Exploitable Structure in Linear and Integer Programs,” Center for Business Decision Analysis Report 119 (1984, revised 1985). ·Zbl 0667.90070 |
[11] | H.J. Greenberg and W.P. Pierskalla, ”Surrogate Mathematical Programming,”Operations Research 18 (1970) 924–939. ·Zbl 0232.90059 ·doi:10.1287/opre.18.5.924 |
[12] | M. Guignard, ”A Lagrangean Dual Ascent Method Based on (Separable) Relaxation Strengthened by Valid Inequalities (Illustrated for the Matching Problem),” Department of Statistics Report #54, University of Pennsylvania (1983). |
[13] | M. Guignard, ”A Lagrangean Dual Ascent Method for Simple Plant Location Problems,” Department of Statistics Report #59, University of Pennsylvania (1984a), to appear inEuropean J. Oper. Res. ·Zbl 0696.90025 |
[14] | M. Guignard, ”Lagrangean Decomposition: An Improvement over Lagrangean and Surrogate Duals,” Department of Statistics Report #62, University of Pennsylvania (1984b). |
[15] | M. Guignard and S. Kim, ”A Strong Lagrangean Relaxation for Capacitated Plant Locations Problems,” Department of Statistics Report #56, University of Pennsylvania (1983). |
[16] | M. Guignard and K. Opaswongkarn, ”Lagrangean Ascent for the Capacitated Plant Location Problem,” Department of Statistics Report #57, University of Pennsylvania (1984). ·Zbl 0719.90051 |
[17] | M. Guignard and M. Rosenwein, ”An Application of Lagrangean Decomposition to the Resource Constrained Minimum Weighted Arborescence Problem,” AT&T Bell Laboratories Report (1987). ·Zbl 0701.90064 |
[18] | M. Guignard and K. Spielberg ”Separable Lagrangean Relaxation for Weakly-Linked Mixed Integer Programming Problems,”Methods of Operations Research 49 (1985) 239–253. ·Zbl 0564.90048 |
[19] | G.Y. Handler and I. Zang, ”A Dual Algorithm for the Constrained Shortest Path Problem,”Networks 10 (1980) 293–310. ·Zbl 0453.68033 ·doi:10.1002/net.3230100403 |
[20] | K.O. Jörnsten, M. Näsberg and P.A. Smeds, ”Variable splitting–A New Lagrangean Relaxation Approach to Some Mathematical Programming Models,” Department of Mathematics Report LiTHMAT-R-85-04, Linköping Institute of Technology, Sweden (1985). |
[21] | M.H. Karwan and R.L. Rardin, ”Some Relationships between Lagrangean and Surrogate Duality in Integer Programming,”Mathematical Programming 18 (1979) 320–334. ·Zbl 0421.90056 ·doi:10.1007/BF01588253 |
[22] | S. Kim, oral communication (1984). |
[23] | S. Kim, ”Solving Single Side Constraint Problems in Integer Programming: the Inequality Case,” Department of Statistics, Report #60, University of Pennsylvania (1984). |
[24] | S. Kim, ”Primal Interpretation of Lagrangean Decomposition” Department of Statistics Report #72, University of Pennsylvania (1985). |
[25] | M. Minoux, ”Plus courts chemins avec contraintes: algorithmes et applications,”Annales des Télécommunications 30 (1975) 383–394. ·Zbl 0347.90065 |
[26] | M. Minoux, ”Lagrangean Decomposition,” oral communication (1983). |
[27] | C. Ribeiro, ”Algorithmes de Recherche de Plus Courts Chemins avec Contraintes: Etude Théorique, Implémentation et Parallélisation,” Doctoral Dissertation, Paris (1983). |
[28] | C. Ribeiro and M. Minoux, ”Solving Hard Constrained Shortest Path Problems,” ORSA-TIMS Meeting, Dallas (1984). ·Zbl 0549.90073 |
[29] | C. Ribeiro and M. Minoux, ”Solving Hard Constrained Shortest Path Problems by Lagrangean Relaxation and Branch and Bound Algorithms,”Methods of Operations Research 53 (1986) 303–316. ·Zbl 0596.90091 |
[30] | F. Shepardson and R. Marsten, ”A Lagrangean Relaxation Algorithm for the Two-Duty Period Scheduling Problem,”Management Science 26 (1980) 274–281. ·Zbl 0448.90042 ·doi:10.1287/mnsc.26.3.274 |
[31] | R. Wong, ”A Dual Ascent Approach for Steiner Tree Problems on a Directed Graph,”Mathematical Programming 28 (1984) 271–287. ·Zbl 0532.90092 ·doi:10.1007/BF02612335 |