[1] | P.G. Abrahamson, ”A nested decomposition approach for solving staircase-structured linear programs,” in: G.B. Dantzig, M.A.H. Dempster and M. Kallio, eds.,Large-scale Linear Programming: Proceedings of a HASA workshop (International Institute for Applied Systems Analysis, Laxenburg, 1981) pp. 367–381. ·Zbl 0538.90052 |
[2] | J.F. Benders, ”Partitioning procedures for solving mixed-variables programming problems,”Numerische Mathematik 4 (1962) 238–252. ·Zbl 0109.38302 ·doi:10.1007/BF01386316 |
[3] | R.H. Cobb and J. Cord, ”Decomposition approaches for solving linked problems,” in: H.W. Kuhn, ed.,Proceedings of the Princeton Symposium on Mathematical Programming (Princeton University Press, Princeton, NJ, 1970) pp. 37–49. ·Zbl 0234.90031 |
[4] | G.B. Dantzing,Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963). |
[5] | G.B. Dantzig, ”Time-staged linear programs,” Technical Report SOL 80-28, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1980). |
[6] | G.B. Dantzig and P. Wolfe, ”Decomposition principle for linear programs,”Operations Research 8 (1960) 101–110. ·Zbl 0093.32806 ·doi:10.1287/opre.8.1.101 |
[7] | G.B. Dantzig and P. Wolfe, ”The decomposition algorithm for linear programs,”Econometrica 29 (1961) 767–778. ·Zbl 0104.14305 ·doi:10.2307/1911818 |
[8] | R. Fourer, ”Sparse Gaussian elimination of staircase linear systems,” Technical Report SOL 79-17, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1979). |
[9] | R. Fourer, ”Solving staircase linear programs by the simplex method, 1: Inversion,”Mathematical Programming 23 (1982) 274–313. ·Zbl 0487.90076 ·doi:10.1007/BF01583795 |
[10] | R. Fourer, ”Solving staircase linear programs by the simplex method, 2: Pricing,”Mathematical Programming 25 (1983) 251–292. ·Zbl 0506.90054 ·doi:10.1007/BF02594780 |
[11] | A.M. Geoffrion, ”Elements of large-scale mathematical programming, part I: Concepts”,Management Science 16 (1970) 653–675. ·Zbl 0209.22801 |
[12] | C.R. Glassey, ”Dynamic linear programs for production scheduling,”Operations Research 19 (1971) 45–56. ·Zbl 0216.26702 ·doi:10.1287/opre.19.1.45 |
[13] | C.R. Glassey, ”Nested decomposition and multi-stage linear programs,”Management Science 20 (1973) 282–292. ·Zbl 0313.90037 ·doi:10.1287/mnsc.20.3.282 |
[14] | J.K. Ho and E. Loute, ”A comparative study of two methods for staircase linear programs,”Transactions on Mathematical Software, ACM 6 (1980) 17–30. ·Zbl 0432.90048 ·doi:10.1145/355873.355875 |
[15] | J.K. Ho and E. Loute, ”A set of staircase linear programming test problems,”Mathematical Programming 20 (1981) 245–250. ·Zbl 0448.90036 ·doi:10.1007/BF01589349 |
[16] | J.K. Ho and E. Loute, ”An advanced implementation of the Dantzig-Wolfe decomposition algorithm for linear programming,”Mathematical Programming 20 (1981) 303–326. ·Zbl 0468.90042 ·doi:10.1007/BF01589355 |
[17] | J.K. Ho and E. Loute, ”Computational experience with advanced implementation of decomposition algorithms for linear programming,”Mathematical Programming 27 (1983) 283–290. ·Zbl 0521.65043 ·doi:10.1007/BF02591904 |
[18] | J.K. Ho and A.S. Manne, ”Nested decomposition for dynamic models,”Mathematical Programming 6 (1974) 121–140. ·Zbl 0294.90051 ·doi:10.1007/BF01580231 |
[19] | M. Kallio and E.L. Porteus, ”Decomposition of arborescent linear programs,”Mathematical Programming 13 (1973) 348–356. ·Zbl 0377.90068 ·doi:10.1007/BF01584347 |
[20] | L.S. Lasdon,Optimization Theory for Large Systems (Macmillan, New York, 1970). ·Zbl 0224.90038 |
[21] | D.F. Lynch, ”A nested decomposition algorithm with surrogate rows for staircase structured linear programs,” M.S. thesis, School of Operations Research and Industrial Engineering, Cornell University (Ithaca, NY 1983). |
[22] | D.F. Lynch, ”The guided decomposition algorithm for linear programs,” Ph.D. thesis, School of Operations Research and Industrial Engineering, Cornell University (Ithaca, NY, 1984). |
[23] | A.S. Manne, ”Sufficient conditions for optimality in an infinite horizon development plan,”Econometrica 38 (1970) 18–38. ·doi:10.2307/1909238 |
[24] | B.A. Murtagh and M.A. Saunders, ”MINOS user’s guide,” Technical Report SOL 77-9, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1977). |
[25] | G.L. Nemhauser, ”Decomposition of linear programs by dynamic programming,”Naval Research Logistics Quarterly 11 (1974) 191–196. ·Zbl 0136.14105 ·doi:10.1002/nav.3800110206 |
[26] | P.V. Preckel, ”Modules for use with MINOS/AUGMENTED in solving sequences of mathematical programs,” Technical Report SOL 80-15, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1980). |
[27] | M.A. Saunders, ”MINOS system manual,” Technical Report SOL 77-31, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1977). |
[28] | R.M. van Slyk and R. Wets, ”L-shaped linear programs with applications to optimal control and stochastic programming,”SIAM Journal of Applied Mathematics 17 (1969) 638–663. ·Zbl 0197.45602 ·doi:10.1137/0117061 |
[29] | R.J. Wittrock, ”Advances in a nested decomposition algorithm for solving staircase linear programs,” Technical Report SOL 83-2, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1983). |