90C35 | Programming involving graphs or networks |
[1] | A. Balakrishnan, ”Valid inequalities and algorithms for the network design problem with an application to LTL consolidation,” Dissertation, Sloan School of Management, Massachusetts Institute of Technology (Cambridge, MA, 1984). |
[2] | A. Balakrishnan and S.C. Graves, ”A composite algorithm for the concave-cost LTL consolidation problem,” Working paper No. 877, Krannert Graduate School of Management, Purdue University (West Lafayette, 1985). |
[3] | D.C. Cho, E.L. Johnson, M.W. Padberg and M.R. Rao, ”On the uncapacitated plant location problem I: Valid inequalities and facets,”Mathematics of Operations Research 8 (1983a) 579–589. ·Zbl 0536.90029 ·doi:10.1287/moor.8.4.579 |
[4] | D.C. Cho, M.W. Padberg and M.R. Rao, ”On the uncapacitated plant location problem II: Facets and lifting theorems,”Mathematics of Operations Research 8 (1983b) 590–612. ·Zbl 0536.90030 ·doi:10.1287/moor.8.4.590 |
[5] | V. Chvatal, ”Edmonds polytopes and a hierarchy of combinatiorial problems,”Discrete Mathematics 4 (1973) 305–337 ·Zbl 0253.05131 ·doi:10.1016/0012-365X(73)90167-2 |
[6] | G. Cornuejols, M. Fisher and G.L. Nemhauser, ”On the uncapacitated plant location problems,”Annals of Discrete Mathematics 1 (1977) 163–177. ·Zbl 0358.90040 ·doi:10.1016/S0167-5060(08)70732-5 |
[7] | G. Cornuejols and J.M. Thizy, ”Some facets of the simple plant location polytope,”Mathematical Programming 23 (1982) 50–74. ·Zbl 0485.90069 ·doi:10.1007/BF01583779 |
[8] | H. Crowder, E.L. Johnson and M.W. Padberg, ”Solving large-scale zero-one linear programming problems,”Operations Research 31 (1983) 803–834. ·Zbl 0576.90065 ·doi:10.1287/opre.31.5.803 |
[9] | D. Erlenkotter, ”A dual-based procedure for uncapacitated facility location,”Operations Research 26 (1978) 992–1009. ·Zbl 0422.90053 ·doi:10.1287/opre.26.6.992 |
[10] | M. Grotschel and W.R. Pulleybland, ”Weakly bipartite graphs and the max cut problem,”Operations Research Letters 1 (1981) 23–27. ·Zbl 0494.90078 ·doi:10.1016/0167-6377(81)90020-1 |
[11] | M. Guignard, ”Fractional vertices, cuts and facets of the simple plant location problem,”Mathematical Programming 12 (1980) 150–162. ·Zbl 0439.90061 |
[12] | A.S. Lapaugh and C.H. Papadimitriou, ”The even-path problem for graphs and digraphs,”Network 14 (1984) 507–513. ·Zbl 0552.68059 ·doi:10.1002/net.3230140403 |
[13] | E.L. Lawler,Combinatioal Optimization: Networks and Matroids (Holt, Rinehart and Winston, New York, 1976). ·Zbl 0413.90040 |
[14] | T.L. Magnanti and R.T. Wong, ”Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria,”Operations Research 29 (1981) 464–484. ·Zbl 0455.90064 ·doi:10.1287/opre.29.3.464 |
[15] | T.L. Magnanti and R.T. Wong, ”Netwok design and transporation planning: Models and algorithms,”Transporation Science 18 (1984) 1–55. ·doi:10.1287/trsc.18.1.1 |
[16] | T.L. Magnanti, R.T. Wong and P. Mireault, ”Tailoring Benders decomposition for uncapacitated network design,”Mathematical Programming Study 26 (1986) 112–154. ·Zbl 0596.90098 |
[17] | W.B. Powell and Y. Sheffi, ”The load planning problem of LTL motor carriers: Problem description and a proposed solution approach,”Transportation Research 17A (1983) 471–480. |
[18] | R.L. Rardin and U. Choe, ”Tighter relaxations of fixed charge network flow problem,” Technical report No. J-79-18, School of Industrial and Systems Engineering, Georgia Institute of Technology (Atlanta, 1979). |
[19] | A. Schrijver, ”On cutting planes,”Annals of Discrete Mathematics 9 (1980) 291–296. ·Zbl 0441.90070 ·doi:10.1016/S0167-5060(08)70085-2 |
[20] | H.P. Williams, ”Experiments in the formulation of integer programming problems,”Mathematical Programming Study 2 (1974) 180–197. ·Zbl 0353.90062 |
[21] | R.T. Wong, ”A dual ascent approach for Steiner tree problems on a directed graph,”Mathematical Programming 28 (1984) 271–287. ·Zbl 0532.90092 ·doi:10.1007/BF02612335 |