Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Stochastic global optimization methods. II: Multi level methods.(English)Zbl 0634.90067

Summary: [For part I see the preceding review.]
Two stochastic methods for global optimization are described that, with probability 1, find all relevant local minima of the objective function with the smallest possible number of local searches. The computational performance of these methods is examined both analytically and empirically.

MSC:

90C30 Nonlinear programming
65K05 Numerical mathematical programming methods

Citations:

Zbl 0534.90066

Cite

References:

[1]J.L. Bentley, B.W. Weide and A.C. Yao, ”Optimal expected-time algorithms for closest point problems,”ACM Transactions on Mathematical Software 6 (1980) 563–580. ·Zbl 0441.68077 ·doi:10.1145/355921.355927
[2]C.G.E. Boender and A.H.G. Rinnooy Kan, ”Bayesian stopping rules for a class of stochastic global optimization methods,” Technical Report, Econometric Institute, Erasmus University Rotterdam (1985). ·Zbl 0577.90064
[3]F.H. Branin and S.K. Hoo, ”A method for finding multiple extrema of a function ofn variables,” in: F.A. Lootsma, ed.,Numerical Methods of Nonlinear Optimization (Academic Press, London, 1972) pp. 231–237. ·Zbl 0271.65035
[4]H. Bremmerman, ”A method of unconstrained global optimization,”Mathematical Biosciences 9 (1970) 1–15. ·Zbl 0212.51204 ·doi:10.1016/0025-5564(70)90087-8
[5]L. De Biase and F. Frontini, ”A stochastic method for global optimization: its structure and numerical performance” (1978), in: Dixon and Szegö (1978a) pp. 85–102. ·Zbl 0396.90082
[6]L.C.W. Dixon, J. Gomulka and S.E. Hersom, ”Reflections on the global optimization problem,” in: L.C.W. Dixon, ed.,Optimization in Action (Academic Press, London 1976) 398–435.
[7]L.C.W. Dixon and G.P. Szegö (eds.),Towards Global Optimization 2 (North-Holland, Amsterdam, 1978a). ·Zbl 0385.00011
[8]L.C.W. Dixon and G.P. Szegö, ”The global optimization problem” (1978b) in: Dixon and Szegö (1978a) pp. 1–15.
[9]A. O. Griewank, ”Generalized descent for global optimization,”Journal of Optimization Techniques and Application 34 (1981) 11–39. ·Zbl 0431.49036 ·doi:10.1007/BF00933356
[10]J.T. Postmus, A.H.G. Rinnooy Kan and G.T. Timmer, ”An efficient dynamic selection method,”Communications of the ACM 26 (1983) 878–881. ·doi:10.1145/182.358440
[11]W.L. Price, ”A controlled random search procedure for global optimization” (1978), in: Dixon and Szegö (1978a) pp. 71–84. ·Zbl 0394.90092
[12]A.H.G. Rinnooy Kan and G.T. Timmer, ”Stochastics Methods for global optimization,”American Journal of Mathematical and Management Sciences 4 (1984) 7–40. ·Zbl 0556.90073
[13]A.H.G. Rinnooy Kan and G.T. Timmer, ”Stochastic global optimization methods. Part I: clustering methods,”Mathematical Programming 38 (1987) 27–56 (this issue). ·Zbl 0634.90066
[14]J.A. Snijman and L.P. Fatti, ”A multistart global minimization algorithm with dynamic search trajectories,” Technical Report, University of Pretoria (Republic of South Africa, 1985).
[15]R.E. Tarjan,Data Structures and Network Algorithms, Siam CBNS/NSF Regional Conference Series in Applied Mathematics (1983). ·Zbl 0584.68077
[16]A.A. Törn, ”Cluster analysis using seed points and density determined hyperspheres with an application to global optimization,” in:Proceeding of the Third International Conference on Pattern Recognition, Coronado, California (1976).
[17]A.A. Törn, ”A search clustering approach to global optimization” (1978), in: Dixon and Szegö (1978a) pp. 49–62.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp