90C30 | Nonlinear programming |
90C20 | Quadratic programming |
65K05 | Numerical mathematical programming methods |
90C52 | Methods of reduced gradient type |
49M37 | Numerical methods based on nonlinear programming |
[1] | P. Bertsekas, ”On the Goldstein-Levitin-Polyak gradient projection method,”IEEE Transactions on Automatic Control 21 (1976) 174–184. ·Zbl 0326.49025 ·doi:10.1109/TAC.1976.1101194 |
[2] | D.P. Bertsekas, ”Projected Newton methods for optimization problems with simple constraints,”SIAM Journal on Control and Optimization 20 (1982) 221–246. ·Zbl 0507.49018 ·doi:10.1137/0320018 |
[3] | J.V. Burke and J.J. Moré, ”On the identification of active constraints,” Argonne National Laboratory, Mathematics and Computer Science Division Report ANL/MCS-TM-82, (Argonne, IL, 1986). ·Zbl 0662.65052 |
[4] | R.S. Dembo and U. Tulowitzki, ”On the minimization of quadratic functions subject to box constraints,” Working Paper Series B#71, School of Organization and Management, Yale University, (New Haven, CT, 1983). |
[5] | R.S. Dembo and U. Tulowitzki, ”Local convergence analysis for successive inexact quadratic programming methods,” Working Paper Series B#78, School of Organization and Management, Yale University, (New Haven, CT, 1984). |
[6] | R.S. Dembo and U. Tulowitzki, ”Sequential truncated quadratic programming methods,”, in: P.T. Boggs, R.H. Byrd and R.B. Schnabel, eds.,Numerical Optimization 1984 (Society of Industrial and Applied Mathematics, Philadelphia, 1985) pp. 83–101. ·Zbl 0583.65042 |
[7] | J.C. Dunn, ”Global and asymptotic convergence rate estimates for a class of projected gradient processes,”SIAM Journal on Control and Optimization 19 (1981), 368–400. ·Zbl 0488.49015 ·doi:10.1137/0319022 |
[8] | J.C. Dunn, ”On the convergence of projected gradient processes to singular critical points,”Journal of Optimization Theory and Applications (1986) to appear. |
[9] | R. Fletcher,Practical Methods of Optimization Volume 2: Constrained Optimization (John Wiley & Sons, New York, 1981). ·Zbl 0474.65043 |
[10] | E.M. Gafni and D.P. Bertsekas, ”Convergence of a gradient projection method,” Massachusetts Institute of Technology, Laboratory for Information and Decision Systems Report LIDS-P-1201 (Cambridge, Massachusetts, 1982). ·Zbl 0478.90071 |
[11] | E.M. Gafni and D.P. Bertsekas, ”Two-metric projection methods for constrained optimization,”SIAM Journal on Control and Optimization 22 (1984) 936–964. ·Zbl 0555.90086 ·doi:10.1137/0322061 |
[12] | P.E. Gill, W. Murray and M.H. Wright,Practical Optimization (Academic Press, New York, 1981). ·Zbl 0503.90062 |
[13] | A.A. Goldstein, ”Convex programming in Hilbert space,”Bulletin of the American Mathematical Society 70 (1964) 709–710. ·Zbl 0142.17101 ·doi:10.1090/S0002-9904-1964-11178-2 |
[14] | E.S. Levitin and B.T. Polyak, ”Constrained minimization problems”,USSR Computational Mathematics and Mathematical Physics 6 (1966), 1–50. ·Zbl 0161.07002 ·doi:10.1016/0041-5553(66)90114-5 |
[15] | G.P. McCormick and R.A. Tapia, ”The gradient projection method under mild differentiability conditions,”SIAM Journal on Control 10 (1972) 93–98. ·Zbl 0237.49019 ·doi:10.1137/0310009 |
[16] | D.P. O’Leary, ”A generalized conjugate gradient algorithm for solving a class of quadratic programming problems,”Linear Algebra and its Applications 34 (1980) 371–399. ·Zbl 0464.65039 ·doi:10.1016/0024-3795(80)90173-1 |
[17] | R.R. Phelps ”The gradient projection method using Curry’s steplength,”SIAM Journal on Control and Optimization 24 (1986) 692–699. ·Zbl 0603.90117 ·doi:10.1137/0324042 |
[18] | B.T. Polyak, ”The conjugate gradient method in extremal problems,”USSR Computational Mathematics and Mathematical Physics 9 (1969) 94–112. ·Zbl 0229.49023 ·doi:10.1016/0041-5553(69)90035-4 |
[19] | E.H. Zarantonello, ”Projections on convex sets in Hilbert space and spectral theory,” in: E.H. Zarantonello, ed.,Contributions to Nonlinear Functional Analysis (Academic Press, New York, 1971). ·Zbl 0281.47043 |