Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Projected gradient methods for linearly constrained problems.(English)Zbl 0634.90064

Summary: The aim of this paper is to study the convergence properties of the gradient projection method and to apply these results to algorithms for linearly constrained problems. The main convergence result is obtained by defining a projected gradient, and proving that the gradient projection method forces the sequence of projected gradients to zero. A consequence of this result is that if the gradient projection method converges to a nondegenerate point of a linearly constrained problem, then the active and binding constraints are identified in a finite number of iterations. As an application of our theory, we develop quadratic programming algorithms that iteratively explore a subspace defined by the active constraints. These algorithms are able to drop and add many constraints from the active set, and can either compute an accurate minimizer by a direct method, or an approximate minimizer by an iterative method of the conjugate gradient type. Thus, these algorithms are attractive for large scale problems. We show that it is possible to develop a finite terminating quadratic programming algorithm without non-degeneracy assumptions.

MSC:

90C30 Nonlinear programming
90C20 Quadratic programming
65K05 Numerical mathematical programming methods
90C52 Methods of reduced gradient type
49M37 Numerical methods based on nonlinear programming

Cite

References:

[1]P. Bertsekas, ”On the Goldstein-Levitin-Polyak gradient projection method,”IEEE Transactions on Automatic Control 21 (1976) 174–184. ·Zbl 0326.49025 ·doi:10.1109/TAC.1976.1101194
[2]D.P. Bertsekas, ”Projected Newton methods for optimization problems with simple constraints,”SIAM Journal on Control and Optimization 20 (1982) 221–246. ·Zbl 0507.49018 ·doi:10.1137/0320018
[3]J.V. Burke and J.J. Moré, ”On the identification of active constraints,” Argonne National Laboratory, Mathematics and Computer Science Division Report ANL/MCS-TM-82, (Argonne, IL, 1986). ·Zbl 0662.65052
[4]R.S. Dembo and U. Tulowitzki, ”On the minimization of quadratic functions subject to box constraints,” Working Paper Series B#71, School of Organization and Management, Yale University, (New Haven, CT, 1983).
[5]R.S. Dembo and U. Tulowitzki, ”Local convergence analysis for successive inexact quadratic programming methods,” Working Paper Series B#78, School of Organization and Management, Yale University, (New Haven, CT, 1984).
[6]R.S. Dembo and U. Tulowitzki, ”Sequential truncated quadratic programming methods,”, in: P.T. Boggs, R.H. Byrd and R.B. Schnabel, eds.,Numerical Optimization 1984 (Society of Industrial and Applied Mathematics, Philadelphia, 1985) pp. 83–101. ·Zbl 0583.65042
[7]J.C. Dunn, ”Global and asymptotic convergence rate estimates for a class of projected gradient processes,”SIAM Journal on Control and Optimization 19 (1981), 368–400. ·Zbl 0488.49015 ·doi:10.1137/0319022
[8]J.C. Dunn, ”On the convergence of projected gradient processes to singular critical points,”Journal of Optimization Theory and Applications (1986) to appear.
[9]R. Fletcher,Practical Methods of Optimization Volume 2: Constrained Optimization (John Wiley & Sons, New York, 1981). ·Zbl 0474.65043
[10]E.M. Gafni and D.P. Bertsekas, ”Convergence of a gradient projection method,” Massachusetts Institute of Technology, Laboratory for Information and Decision Systems Report LIDS-P-1201 (Cambridge, Massachusetts, 1982). ·Zbl 0478.90071
[11]E.M. Gafni and D.P. Bertsekas, ”Two-metric projection methods for constrained optimization,”SIAM Journal on Control and Optimization 22 (1984) 936–964. ·Zbl 0555.90086 ·doi:10.1137/0322061
[12]P.E. Gill, W. Murray and M.H. Wright,Practical Optimization (Academic Press, New York, 1981). ·Zbl 0503.90062
[13]A.A. Goldstein, ”Convex programming in Hilbert space,”Bulletin of the American Mathematical Society 70 (1964) 709–710. ·Zbl 0142.17101 ·doi:10.1090/S0002-9904-1964-11178-2
[14]E.S. Levitin and B.T. Polyak, ”Constrained minimization problems”,USSR Computational Mathematics and Mathematical Physics 6 (1966), 1–50. ·Zbl 0161.07002 ·doi:10.1016/0041-5553(66)90114-5
[15]G.P. McCormick and R.A. Tapia, ”The gradient projection method under mild differentiability conditions,”SIAM Journal on Control 10 (1972) 93–98. ·Zbl 0237.49019 ·doi:10.1137/0310009
[16]D.P. O’Leary, ”A generalized conjugate gradient algorithm for solving a class of quadratic programming problems,”Linear Algebra and its Applications 34 (1980) 371–399. ·Zbl 0464.65039 ·doi:10.1016/0024-3795(80)90173-1
[17]R.R. Phelps ”The gradient projection method using Curry’s steplength,”SIAM Journal on Control and Optimization 24 (1986) 692–699. ·Zbl 0603.90117 ·doi:10.1137/0324042
[18]B.T. Polyak, ”The conjugate gradient method in extremal problems,”USSR Computational Mathematics and Mathematical Physics 9 (1969) 94–112. ·Zbl 0229.49023 ·doi:10.1016/0041-5553(69)90035-4
[19]E.H. Zarantonello, ”Projections on convex sets in Hilbert space and spectral theory,” in: E.H. Zarantonello, ed.,Contributions to Nonlinear Functional Analysis (Academic Press, New York, 1971). ·Zbl 0281.47043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp