90C33 | Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming) |
65K05 | Numerical mathematical programming methods |
[1] | E.L. Allgower and K. Georg, ”Simplicial and continuation methods for approximating fixed points and solutions to systems of equations,”SIAM Review 22 (1980) 28–85. ·Zbl 0432.65027 ·doi:10.1137/1022003 |
[2] | S.N. Chow, J. Mallet-Paret and J.A. Yorke, ”Finding zeroes of maps: homotopy methods that are constructive with probability one,”Mathematics of Computation 32 (1978) 887–899. ·Zbl 0398.65029 ·doi:10.1090/S0025-5718-1978-0492046-9 |
[3] | B.C. Eaves, ”On the basic theory of complementarity,”Mathematical Programming 1 (1971) 68–75. ·Zbl 0227.90044 ·doi:10.1007/BF01584073 |
[4] | M.L. Fisher and F.J. Gould, ”A simplicial algorithm for the nonlinear complementarity problem,”Mathematical Programming 6 (1974) 281–300. ·Zbl 0291.90058 ·doi:10.1007/BF01580246 |
[5] | C.B. Garcia, ”The complementarity problem and its applications,” Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (1973). ·Zbl 0284.90048 |
[6] | G.J. Habetler and K.M. Kostreva, ”On a direct algorithm for nonlinear complementarity problems,”SIAM Journal of Control and Optimization 16 (1978) 504–511. ·Zbl 0392.90083 ·doi:10.1137/0316033 |
[7] | M. Kojima, ”Computational methods for solving the nonlinear complementarity problem”, Keio Engineering Reports 27, Keio University, Yokohama, Japan (1974). ·Zbl 0406.90071 |
[8] | M. Kojima and R. Saigal, ”On the number of solutions to a class of complementarity problems,”Mathematical Programming 21 (1981) 190–203. ·Zbl 0461.90066 ·doi:10.1007/BF01584240 |
[9] | M. Kojima and Y. Yamamoto, ”Variable dimension algorithms: Basic theory, interpretations and extensions of some existing methods,”Mathematical Programming 24 (1982) 177–215. ·Zbl 0509.90070 ·doi:10.1007/BF01585103 |
[10] | M. Kojima and Y. Yamamoto, ”A unified approach to the implementation of several restart fixed point algorithms and a new variable dimension algorithm,”Mathematical Programming 28 (1984) 288–328. ·Zbl 0539.65036 ·doi:10.1007/BF02612336 |
[11] | G. van der Laan and A.J.J. Talman, ”A restart algorithm for computing fixed points without an extra dimension,”Mathematical Programming 17 (1979) 74–84. ·Zbl 0411.90061 ·doi:10.1007/BF01588226 |
[12] | G. van der Laan and A.J.J. Talman, ”A class of simplicial restart fixed point algorithms without an extra dimension,”Mathematical Programming 20 (1981) 33–48. ·Zbl 0441.90112 ·doi:10.1007/BF01589331 |
[13] | G. van der Laan and A.J.J. Talman, ”Simplicial algorithms for finding stationary points, a unifying description,”Journal of Optimization Theory and Applications 50 (1986) 165–182. ·Zbl 0571.90075 ·doi:10.1007/BF00938483 |
[14] | H.J. Lüthi, ”A simplicial approximation of a solution for the nonlinear complementarity problem,”Mathematical Programming 9 (1975) 278–293. ·Zbl 0358.90058 ·doi:10.1007/BF01681351 |
[15] | O.L. Mangasarian, ”Equivalence of the complementarity problem to a system of nonlinear equations,”SIAM Journal of Applied Mathematics 31 (1976) 89–92. ·Zbl 0339.90051 ·doi:10.1137/0131009 |
[16] | O.H. Merrill, ”Applications and extensionof an algorithm that computes fixed points of certain upper semi-continuous point-to-set mappings” Ph.D. Thesis, University of Michigan, Ann Arbor, Mich. (1972). |
[17] | J.J. Moré, ”Coercivity conditions in nonlinear complementarity algorithms”,SIAM Review 16 (1974) 1–15. ·doi:10.1137/1016001 |
[18] | R. Saigal, ”A homotopy for solving large, sparse and structured fixed point problems”,Mathematics of Operations Research 8 (1983) 557–578. ·Zbl 0532.65039 ·doi:10.1287/moor.8.4.557 |
[19] | A.J.J. Talman, ”Variable dimension fixed point algorithms and triangulations,” Mathematical Centre Tracts, 128 (Mathematisch Centrum, Amsterdam, 1980). ·Zbl 0464.90047 |
[20] | A.J.J. Talman and L. Van der Heyden, ”Algorithms for the linear complementarity problem which allow an arbitrary starting point,” in: B.C. Eaves et al., eds.Homotopy Methods and Global Convergence (Plenum Press, New York, 1983) pp. 267–286. ·Zbl 0542.65034 |
[21] | M.J. Todd, ”Improving the convergence of fixed point algorithms”,Mathematical Programming Study 7 (1978) 151–169. ·Zbl 0399.65034 |
[22] | M.J. Todd, ”Global and local convergence and monotonicity results for a recent variable dimension simplicial algorithm,” in W. Forster, ed.,Numerical Solution of Highly Nonlinear Problems (North-Holland, Amsterdam, 1980) pp. 43–69. ·Zbl 0449.65021 |
[23] | L.T. Watson, ”Solving the nonlinear complementarity problem by a homotopy method,”SIAM Journal of Control and Optimization 17 (1979) 36–46. ·Zbl 0407.90083 ·doi:10.1137/0317004 |
[24] | A.H. Wright, ”The octahedral algorithm, a new simplicial fixed point algorithm”,Mathematical Programming 21 (1981) 47–9. ·Zbl 0475.65029 ·doi:10.1007/BF01584229 |
[25] | Y. Yamamoto, ”A new variable dimension algorithm for the fixed point problem”,Mathematical Programming 25 (1983) 329–342. ·Zbl 0495.90071 ·doi:10.1007/BF02594783 |