90C30 | Nonlinear programming |
49M30 | Other numerical methods in calculus of variations (MSC2010) |
65K05 | Numerical mathematical programming methods |
49M37 | Numerical methods based on nonlinear programming |
[1] | D.P. Bertsekas,Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, 1982). ·Zbl 0572.90067 |
[2] | A.R. Conn, ”Penalty function methods”, in: M.J.D. Powell, ed.,Nonlinear Optimization 1981 (Academic Press, New York, 1982) pp. 235–242. |
[3] | G. Di Pillo and L. Grippo, ”A class of continuously differentiable exact penalty function algorithms for nonlinear programming problems,” in: P. Toft-Christensen, ed.,System Modelling and Optimization (Springer-Verlag, Berlin, 1984) pp. 246–256. ·Zbl 0545.90085 |
[4] | G. Di Pillo and L. Grippo, ”An exact penalty method with global convergence properties for nonlinear programming problems”, Technical Report R.99, IASI-CNR (Roma, October 1984). |
[5] | G. Di Pillo and L. Grippo, ”A continuously differentiable exact penalty function for nonlinear programming problems with inequality constraints”,SIAM Journal on Control and Optimization 23 (1985) 72–84. ·Zbl 0569.90072 ·doi:10.1137/0323007 |
[6] | G. Di Pillo, L. Grippo and S. Lucidi, ”Globally convergent exact penalty algorithms for constrained optimization”, Contributed paper, 12th IFIP Conference on System Modelling and Optimization, Budapest, September 1985. ·Zbl 0679.90068 |
[7] | J.P. Evans, F.J. Gould and J.W. Tolle, ”Exact penalty functions in nonlinear programming”,Mathematical Programming 4 (1973) 72–97. ·Zbl 0267.90079 ·doi:10.1007/BF01584647 |
[8] | A.V. Fiacco and G.P. McCormick,Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley, New York, 1968). ·Zbl 0193.18805 |
[9] | R. Fletcher, ”A class of methods for nonlinear programming with termination and convergence properties”, in: J. Abadie, ed.,Integer and Nonlinear Programming (North-Holland, Amsterdam, 1970) pp. 157–173. ·Zbl 0332.90039 |
[10] | R. Fletcher, ”Penalty functions”, in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming. The State of the Art (Springer-Verlag, Berlin, 1983) pp. 87–114. ·Zbl 0542.90087 |
[11] | T. Glad and E. Polak, ”A multiplier method with automatic limitation of penalty growth”,Mathematical Programming 17 (1979) 140–155. ·Zbl 0414.90078 ·doi:10.1007/BF01588240 |
[12] | S.P. Han and O.L. Mangasarian, ”Exact penalty functions in nonlinear programming”,Mathematical Programming 17 (1979) 251–269. ·Zbl 0424.90057 ·doi:10.1007/BF01588250 |
[13] | O. L. Mangasarian,Nonlinear Programming (Prentice-Hall, Englewood Cliffs, NJ, 1969). |
[14] | D.Q. Mayne and N. Maratos, ”A first order, exact penalty function algorithm for equality constrained optimization problems”,Mathematical Programming 16 (1979) 303–324. ·Zbl 0397.90081 ·doi:10.1007/BF01582118 |
[15] | D.Q. Mayne and E. Polak, ”A superlinearly convergent algorithm for constrained optimization problems”,Mathematical Programming Study 16 (1982) 45–61. ·Zbl 0477.90071 ·doi:10.1007/BFb0120947 |
[16] | N. Mukai and E. Polak, ”A quadratically convergent primal-dual algorithm with global convergence properties for solving optimization problems with equality constraints”,Mathematical Programming 9 (1975) 336–349. ·Zbl 0351.90065 ·doi:10.1007/BF01681354 |
[17] | T. Pietrzykowski, ”An exact potential method for constrained maxima”,SIAM Journal on Numerical Analysis 6 (1969) 294–304. ·Zbl 0181.46501 ·doi:10.1137/0706028 |
[18] | E. Polak, ”On the global stabilization of locally convergent algorithms”,Automatica 12 (1976) 337–342. ·Zbl 0335.49023 ·doi:10.1016/0005-1098(76)90053-4 |
[19] | J.E. Spingarn and R.T. Rockafellar, ”The generic nature of optimality conditions in nonlinear programming”,Mathematics of Operations Research 4 (1979) 425–430. ·Zbl 0423.90071 ·doi:10.1287/moor.4.4.425 |
[20] | W.I. Zangwill, ”Nonlinear programming via penalty functions”,Management Science 13 (1967) 344–358. ·Zbl 0171.18202 ·doi:10.1287/mnsc.13.5.344 |