Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

An exact penalty function method with global convergence properties for nonlinear programming problems.(English)Zbl 0631.90061

In the paper a new continuously differentiable exact penalty function is given for the solution of nonlinear programming problems with compact feasible set. Continuously differentiable exact penalty functions were introduced byR. Fletcher [in: Integer nonlin. Program., 157-175 (1970;Zbl 0332.90039)] for the equality constrained case; the extension to the inequality constrained case has been studied byT. Glad andE. Polak [Math. Program. 17, 140-155 (1979;Zbl 0414.90078)] and by the authors [SIAM J. Control Optimization 23, 72-84 (1985;Zbl 0569.90072)].
It is proved that under suitable regularity and compactness assumptions, a complete equivalence can be established between the solution of a constrained nonlinear programming problem and the unconstrained minimization of a differentiable function whose local minimizers are contained in a bounded open set.
Also a globally convergent algorithm is defined which cannot produce unbounded sequences, thus overcoming the main drawback of existing algorithms based on exact penalty functions.
Reviewer: W.Kotarski

MSC:

90C30 Nonlinear programming
49M30 Other numerical methods in calculus of variations (MSC2010)
65K05 Numerical mathematical programming methods
49M37 Numerical methods based on nonlinear programming

Cite

References:

[1]D.P. Bertsekas,Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, 1982). ·Zbl 0572.90067
[2]A.R. Conn, ”Penalty function methods”, in: M.J.D. Powell, ed.,Nonlinear Optimization 1981 (Academic Press, New York, 1982) pp. 235–242.
[3]G. Di Pillo and L. Grippo, ”A class of continuously differentiable exact penalty function algorithms for nonlinear programming problems,” in: P. Toft-Christensen, ed.,System Modelling and Optimization (Springer-Verlag, Berlin, 1984) pp. 246–256. ·Zbl 0545.90085
[4]G. Di Pillo and L. Grippo, ”An exact penalty method with global convergence properties for nonlinear programming problems”, Technical Report R.99, IASI-CNR (Roma, October 1984).
[5]G. Di Pillo and L. Grippo, ”A continuously differentiable exact penalty function for nonlinear programming problems with inequality constraints”,SIAM Journal on Control and Optimization 23 (1985) 72–84. ·Zbl 0569.90072 ·doi:10.1137/0323007
[6]G. Di Pillo, L. Grippo and S. Lucidi, ”Globally convergent exact penalty algorithms for constrained optimization”, Contributed paper, 12th IFIP Conference on System Modelling and Optimization, Budapest, September 1985. ·Zbl 0679.90068
[7]J.P. Evans, F.J. Gould and J.W. Tolle, ”Exact penalty functions in nonlinear programming”,Mathematical Programming 4 (1973) 72–97. ·Zbl 0267.90079 ·doi:10.1007/BF01584647
[8]A.V. Fiacco and G.P. McCormick,Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley, New York, 1968). ·Zbl 0193.18805
[9]R. Fletcher, ”A class of methods for nonlinear programming with termination and convergence properties”, in: J. Abadie, ed.,Integer and Nonlinear Programming (North-Holland, Amsterdam, 1970) pp. 157–173. ·Zbl 0332.90039
[10]R. Fletcher, ”Penalty functions”, in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming. The State of the Art (Springer-Verlag, Berlin, 1983) pp. 87–114. ·Zbl 0542.90087
[11]T. Glad and E. Polak, ”A multiplier method with automatic limitation of penalty growth”,Mathematical Programming 17 (1979) 140–155. ·Zbl 0414.90078 ·doi:10.1007/BF01588240
[12]S.P. Han and O.L. Mangasarian, ”Exact penalty functions in nonlinear programming”,Mathematical Programming 17 (1979) 251–269. ·Zbl 0424.90057 ·doi:10.1007/BF01588250
[13]O. L. Mangasarian,Nonlinear Programming (Prentice-Hall, Englewood Cliffs, NJ, 1969).
[14]D.Q. Mayne and N. Maratos, ”A first order, exact penalty function algorithm for equality constrained optimization problems”,Mathematical Programming 16 (1979) 303–324. ·Zbl 0397.90081 ·doi:10.1007/BF01582118
[15]D.Q. Mayne and E. Polak, ”A superlinearly convergent algorithm for constrained optimization problems”,Mathematical Programming Study 16 (1982) 45–61. ·Zbl 0477.90071 ·doi:10.1007/BFb0120947
[16]N. Mukai and E. Polak, ”A quadratically convergent primal-dual algorithm with global convergence properties for solving optimization problems with equality constraints”,Mathematical Programming 9 (1975) 336–349. ·Zbl 0351.90065 ·doi:10.1007/BF01681354
[17]T. Pietrzykowski, ”An exact potential method for constrained maxima”,SIAM Journal on Numerical Analysis 6 (1969) 294–304. ·Zbl 0181.46501 ·doi:10.1137/0706028
[18]E. Polak, ”On the global stabilization of locally convergent algorithms”,Automatica 12 (1976) 337–342. ·Zbl 0335.49023 ·doi:10.1016/0005-1098(76)90053-4
[19]J.E. Spingarn and R.T. Rockafellar, ”The generic nature of optimality conditions in nonlinear programming”,Mathematics of Operations Research 4 (1979) 425–430. ·Zbl 0423.90071 ·doi:10.1287/moor.4.4.425
[20]W.I. Zangwill, ”Nonlinear programming via penalty functions”,Management Science 13 (1967) 344–358. ·Zbl 0171.18202 ·doi:10.1287/mnsc.13.5.344
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp