Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Counting almost minimum cutsets with reliability applications.(English)Zbl 0631.90029

The number \(n_ i\) of i-edge network cutsets in a graph is an important parameter in reliability analysis. Using a theorem ofM. V. Lomonosov andV. P. Polesskij [Probl. Peredaci Inform. 8, No.2, 47-53 (1972;Zbl 0272.94019)] andM. O. Ball andJ. S. Provan [SIAM J. Alg. Discrete Methods 3, 166-181 (1982;Zbl 0504.05053)] have shown that the number \(n_ c\) of minimum cardinality network cutsets can be determined in polynomial time. This paper gives a polynomial time algorithm for determining \(n_{c+k}\) for any fixed k, as a special case of counting cuts of specified maximum weight in an edge-weighted graph. The resulting improvement in existing reliability bounds is shown to be substantial.

MSC:

90B25 Reliability, availability, maintenance, inspection in operations research
68Q25 Analysis of algorithms and problem complexity
94C15 Applications of graph theory to circuits and networks

Cite

References:

[1]M.O. Ball, ”Computing network reliability,”Operations Research 27 (1979) 823–838. ·Zbl 0412.90030 ·doi:10.1287/opre.27.4.823
[2]M.O. Ball, ”Complexity of network reliability computations,”Networks 10 (1980) 153–165. ·Zbl 0443.90038 ·doi:10.1002/net.3230100206
[3]M.O. Ball and J.S. Provan, ”Calculating bounds on reachability and connectedness in stochastic networks,”Networks 13 (1983) 253–278 ·Zbl 0569.68053 ·doi:10.1002/net.3230130210
[4]M.O. Ball and J.S. Provan, ”Bounds on the reliability polynomial for shellable independence systems,”SIAM Journal of Algebraic and Discrete Methods 3 (1982) 166–181. ·Zbl 0504.05053 ·doi:10.1137/0603016
[5]R.E. Bixby, ”The minimum number of edges and vertices in a graph with edge connectivityn andm n-bonds,”Networks 5 (1975) 253–298. ·Zbl 0314.05106
[6]J.A. Bondy and U.S.R. Murty,Graph Theory with Applications (North-Holland, Amsterdam, 1976). ·Zbl 1226.05083
[7]T.B. Brecht and C.J. Colbourn, ”Lower bounds on two-terminal network reliability,” to appear inDiscrete Applied Mathematics. ·Zbl 0665.90036
[8]R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte, ”The dissection of rectangles into squares,”Duke Mathematical Journal 7 (1940) 312–340. ·Zbl 0024.16501 ·doi:10.1215/S0012-7094-40-00718-9
[9]J.A. Buzacott, ”A recursive algorithm for finding reliability measures related to the connection of nodes in a graph,”Networks 10 (1980) 311–327. ·Zbl 0454.68074 ·doi:10.1002/net.3230100404
[10]C.J. Colbourn, ”The reliability polynomial,”Ars Combinatoria 21A (1986) 31–58. ·Zbl 0589.90032
[11]C.J. Colboun and D.D. Harms, ”Bounding all-terminal reliability in computer networks,”Networks, to appear.
[12]H. Frank and W. Chou, ”Network properties of the ARPA computer network,”Network 4 (1974) 213–239. ·doi:10.1002/net.3230040303
[13]D. D. Harms, ”An investigation into bounds on network reliability,” M.Sc. Thesis, Department of Computational Science, University of Saskatchewan, 1984.
[14]I.M. Jacobs, ”Connectivity in probabilistic graphs,” Tech. Report #356, MIT, Electronics Research Laboratory, (Cambridge, Mass., 1959).
[15]E.L. Lawler,Combinatorial Optimization: Networks and Matroids (Holt, Rinehart, and Winston, New York, 1976). ·Zbl 0413.90040
[16]M.V. Lomonosov and V.P. Polesskii, ”Lower bounds of network reliability,”Problems of Information Transmission 8 (1972) 118–123. ·Zbl 0335.05124
[17]J.S. Provan and M.O. Ball, ”The complexity of counting cuts and of computing the probability that the graph is connected,”SIAM Journal on Computing 12 (1983) 777–788. ·Zbl 0524.68041 ·doi:10.1137/0212053
[18]A. Ramesh, M.O. Ball and C.J. Colbourn, ”Bounding all-terminal reliability in planar networks,”Annals of Discrete Mathematics 33 (1987) 261–273. ·Zbl 0627.05025
[19]A. Rosenthal, ”Computing the reliability of complex networks,”SIAM Journal of Applied Mathematics 32 (1977) 384–393. ·Zbl 0379.90048 ·doi:10.1137/0132031
[20]A. Satyanarayana and A. Prabhakar, ”New topological formula and rapid algorithm for reliability analysis of complex networks,”IEEE: Transactions on reliability R-27 (1978) 82–100. ·Zbl 0409.90039 ·doi:10.1109/TR.1978.5220266
[21]L.G. Valiant, ”The complexity of enumeration and reliability problems,”SIAM Journal on Computing 8 (1979) 410–421. ·Zbl 0419.68082 ·doi:10.1137/0208032
[22]R. Van Slyke and H. Frank, ”Network reliability analysis: Part l,”Networks 1 (1972) 279–290. ·Zbl 0239.94041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp