Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Compact sets in the space \(L^ p(0,T;B)\).(English)Zbl 0629.46031

If B denotes a Banach space and if \(T>0\), then C(0,T;B) denotes the Banach space of all continuous functions from [0,T] into B equipped with the uniform convergence norm, and for all \(1\leq p\leq \infty\), \(L^ p(0,T;B)\) is the completion of C(0,T;B) under the norm \(\| f\|_{L^ p(0,T;B)}:=(\int^{T}_{0}\| f(t)\|^ p_ Bdt)^{1/p}\) \((1\leq p<\infty)\) and \(=\| \| f(\cdot)\|_ B\|_{\infty}\) for \(p=\infty.\)
In this paper, the author reviews a number of criteria for a subset F of \(L^ p(0,T;B)\) to be compact.
The criteria presented are in a sense all reformulations of the classical theorem of Gelfand-Phillips-Nakamura stating that a bounded subset of a Banach space is relatively compact if and only if every uniformly bounded net of compact operators that converges pointwise to the identity operator converges uniformly on that subset. In addition, the paper contains a number of sufficient conditions of which the following is typical: If the sequence \(\{f_ n\); \(n=1,2,...\}\) is bounded in \(L^ q(0,T;B)\) and in \(L^ 1_{loc}(0,T;X)\), where \(X\subset B\) and if \(\{\partial f_ n/\partial t\); \(n=1,2,...\}\) is bounded in \(L^ 1_{loc}(0,T;Y)\), where \(B\subset Y\), then for all \(1\leq p<q\), \(\{f_ n\}\) is relatively compact in \(L^ p(0,T;B)\).
Reviewer: W.A.J.Luxemburg

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46A50 Compactness in topological linear spaces; angelic spaces, etc.
46E40 Spaces of vector- and operator-valued functions

Cite

References:

[1]R. A.Adams,Sobolev spaces, Academic Press (1975). ·Zbl 0314.46030
[2]Aubin, J. P., Un théorème de compacité, C. R. Acad. Sci., 256, 5042-5044 (1963) ·Zbl 0195.13002
[3]J.Bergh - J.Löfstrom,Interpolation Spaces, Springer Verlag (1976), p. 223. ·Zbl 0344.46071
[4]Bourbaki, N., Fonctions d’une variable réelle, Act. Sci. Ind. (1958), Paris: Hermann, Paris
[5]Bourbaki, N., Intégration, Act. Sci. Ind. (1965), Paris: Hermann, Paris ·Zbl 0136.03404
[6]J. A.Dubinskii,Convergence faible dans les équations elliptiques paraboliques non linéaires, Mat. Sbornik,67, no. 109 (1965).
[7]Grisvard, P., Commutativité de deux foncteurs d’interpolation et applications, Journal de Math., 45, 19-290 (1966) ·Zbl 0173.15803
[8]J. L.Lions,Equations différentielles opérationnelles et problèmes aux limites, Springer (1961), p. 111. ·Zbl 0098.31101
[9]Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Paris: Dunod, Paris ·Zbl 0189.40603
[10]Lions, J. L.; Magenes, E., Problèmes aux limites non homogènes et applications, vol. 1 et 2 (1968), Paris: Dunod, Paris ·Zbl 0165.10801
[11]Lions, J. L.; Magenes, E., Problemi ai limiti non omogenei, III, Annali Scuola Norm. Sup. Pisa, 15, 41-103 (1961)
[12]Lions, J. L.; Peetre, J., Sur une classe d’espace d’interpolation, Inst. Hautes Etudes., 19, 5-68 (1964) ·Zbl 0148.11403
[13]J.Necas,Les méthodes directes en théorie des équations elliptiques, Masson (1967). ·Zbl 1225.35003
[14]Peetre, J., Espaces d’interpolation et théorème de Sobolev, Ann. Inst. Fourier, 16, 279-317 (1966) ·Zbl 0151.17903
[15]Schwartz, L., Théorie des distributions (1951), Parsi: Hermann, Parsi ·Zbl 0042.11405
[16]Schwartz, L., Distributions à valeur vectorielles, I, Annales Inst. Fourier, 7, 1-141 (1957) ·Zbl 0089.09601
[17]Simon, J., Ecoulement d’un fluide non homogène avec une densité initiale s’annulant, C. R. Acad. Sci. Paris, 287, 1009-1012 (1978) ·Zbl 0395.76038
[18]J.Simon,Remarques sur l’évoulement de fluides non homogènes, Publication du L.A. 189, Université Paris VI (1978).
[19]J.Simon,Fractional Sobolev theorem in one dimension, to appear, preprint of L.A. 189, Univ. Paris VI (1985).
[20]R.Temam,Navier-Stokes equations, North-Holland (1979). ·Zbl 0426.35003
[21]E.Temam,Navier-Stokes equations and nonlinear functional analysis, CMBS-NSF, Regional conference series in applied mathematics.
[22]K.Yosida,Functional Analysis, Springer (1965), p. 123. ·Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp