Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Bayesian stopping rules for multistart global optimization methods.(English)Zbl 0626.90079

The unconstrained global optimization problem of a real-valued multimodal objective function f over a compact set S is considered. To solve this problem one can use local search from each point of a random sample drawn from the uniform distribution over S. If the number of local optima of f is unknown then there is no absolute guarantee that all these local optima have been found in some moment. It is appropriate to treat observed optima as a sample from a multinomial distribution whose cells correspond to the optima of f and the number of cells is equal to the unknown number of the optima of f. The posterior density function of the number of local optima is obtained. Several stopping rules are discussed and test results presented.
Reviewer: E.Tamm

MSC:

90C30 Nonlinear programming
65K05 Numerical mathematical programming methods
49M37 Numerical methods based on nonlinear programming

Cite

References:

[1]R.W. Becker and G.V. Lago, ”A global optimization algorithm”, in:Proceedings of the 8th Allerton Conference on Circuits and System Theory (1970).
[2]H.C.P. Berbee, C.G.E. Boender, A.H.G. Rinnooy Kan, C.L. Scheffer, R.L. Smith and J. Telgen, ”Hit-andrun algorithms for the identification of nonredundant linear inequalities” (1985), to appear inMathematical Programming. ·Zbl 0624.90060
[3]C.G.E. Boender, A.H.G. Rinnooy Kan, L. Stougie and G.T. Timmer, ”A stochastic method for global optimization,”Mathematical Programming 22, (1982) 125–140. ·Zbl 0525.90076 ·doi:10.1007/BF01581033
[4]C.G.E. Boender and R. Zielinski, ”A sequential Bayesian approach to estimating the dimension of multinomial distribution”, in: R. Zielinski, (ed.)Sequential Methods in Statistics (Banach Center Publications (vol. 16), PWN-Polish Scientific Publishers, Warsaw, 1982). ·Zbl 0487.62063
[5]C.G.E. Boender and A.H.G. Rinnooy Kan, ”A Bayesian analysis of the number of cells of a multinomial distribution,”The Statistician 32 (1983a) 240–248. ·doi:10.2307/2987621
[6]C.G.E. Boender and A.H.G. Rinnooy Kan (1983b), ”Bayesian multinomial estimation of animal population size”, Report 8322/0, Econometric Institute, Erasmus University (Rotterdam, 1983b). ·Zbl 0628.62026
[7]C.G.E. Boender ”The generalized multinomial distribution: A Bayesian analysis and applications”, Ph.D. Thesis, Erasmus University, (Rotterdam, 1984).
[8]L.C.W. Dixon and G.P. Szegö, eds.,Towards Global Optimisation (North-Holland, Amsterdam, 1975). ·Zbl 0309.90052
[9]L.C.W. Dixon and G.P. Szegö, eds.,Towards Global Optimisation 2 (North-Holland, Amsterdam, 1978). ·Zbl 0385.00011
[10]M.H. De Groot,Optimal Statistical Decisions (McGraw-Hill, New York, 1970).
[11]A.H.G. Rinnooy Kan and G.T. Timmer, ”A stochastic approach to global optimization”, Report 8419/0, Econometric Institute, Erasmus University (Rotterdam, 1984). ·Zbl 0556.90073
[12]A.H.G. Rinnooy Kan and G.T. Timmer (1985), ”Stochastic global optimization methods, Parts I & II”, Econometric Institute, Erasmus University (Rotterdam, 1985). ·Zbl 0571.90072
[13]G.T. Timmer, ”Global optimization: A stochastic approach” Ph.D. Thesis, Erasmus University (Rotterdam, 1984). ·Zbl 0556.90073
[14]S.S. Wilks,Mathematical Statistics (Wiley, New York, 1962). ·Zbl 0173.45805
[15]R. Zielinski, (1981), A statistical estimate of the structure of multiextremal problems,Mathematical Programming 21 (1981) 348–356. ·Zbl 0476.90086 ·doi:10.1007/BF01584254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp