Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Nondifferentiable reverse convex programs and facetial convexity cuts via a disjunctive characterization.(English)Zbl 0626.90078

The paper considers mathematical programming problems of minimizing a linear functional subject to inequality constraints of the form \(g_ i(x)\leq 0\), where \(g_ i\) are real valued, possibly nondifferentiable, concave functions. Such constraints are called reverse convex and the corresponding programs are called reverse convex programs. By extending a work of Hillestad and Jacobsen (1980) it is shown that the closure of the convex hull of the feasible region of the problem is polyhedral. Some connections between disjunctive programs and reverse convex programs are established. It is shown how results about disjunctive programs can be applied to reverse convex programs. Finally an application to a general linear complementarity problem is examined.
Reviewer: A.Shapiro

MSC:

90C30 Nonlinear programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)

Cite

References:

[1]M. Avriel, ”Methods for solving signomial and reverse convex programming problems,” in: M. Avriel, M.J. Rijckaert and D.J. Wilde, eds.,Optimization and Design (Prentice-Hall, Englewood Cliffs, NJ, 1973) pp. 307–320.
[2]M. Avriel,Nonlinear Programming: Analysis and Methods (Prentice-Hall, Englewood Cliffs, NJ, 1976).
[3]M. Avriel and A.C. Williams, ”Complementary geometric programming,”SIAM Journal of Applied Mathematics 19 (1970) 125–141. ·Zbl 0319.90035 ·doi:10.1137/0119011
[4]E. Balas, ”Intersection cuts–a new type of cutting planes for integer programming,”Operations Research 19 (1971) 19–39. ·Zbl 0219.90035 ·doi:10.1287/opre.19.1.19
[5]E. Balas, ”Disjunctive programming: Cutting planes from logical conditions,” in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear Programming (Academic Press, New York, 1975) pp. 279–312. ·Zbl 0349.90117
[6]P.P. Bansal and S.E. Jacobsen, ”Characterization of local solutions for a class of nonconvex programs,”Journal of Optimization Theory and Application 15 (1975a) 549–564. ·Zbl 0281.90078 ·doi:10.1007/BF00933745
[7]P.P. Bansal and S.E. Jacobsen, ”An algorithm for optimizing network flow capacity under economies of scale,Journal of Optimization Theory and Application 15 (1975b) 565–586. ·Zbl 0281.90077 ·doi:10.1007/BF00933746
[8]J. Bard and J.E. Falk, ”An explicit solution to the multi-level programming problem”,Computers and Operations Research 9 (1982a) 77–100. ·doi:10.1016/0305-0548(82)90007-7
[9]J. Bard and J.E. Falk, ”A separable programming approach to the linear complementarity problem,”Computers and Operations Research 9 (1982b) 153–159. ·doi:10.1016/0305-0548(82)90014-4
[10]R.W. Cottle and G.B. Dantzig, ”Complementary pivot theory of mathematical programming,”Linear Algebra and Applications 1 (1968) 103–125. ·Zbl 0155.28403 ·doi:10.1016/0024-3795(68)90052-9
[11]R.S. Dembo, ”Solution of complementary geometric programming problems,” M.Sc. Thesis, Technion, Israel Institute of Technology, Haifa (1972).
[12]G. Gallo and A. Ulkucu, ”Bilinear programming: An exact algorithm,”Mathematical Programming 12 (1977) 173–194. ·Zbl 0363.90086 ·doi:10.1007/BF01593787
[13]F. Glover, ”Convexity cuts and cut search,”Operations Research 21 (1973) 123–124. ·Zbl 0263.90020 ·doi:10.1287/opre.21.1.123
[14]F. Glover, ”Polyhedral convexity cuts and negative edge extensions,”Zeitschrift für Operations Research 18 (1974) 181–186. ·Zbl 0288.90056 ·doi:10.1007/BF02026599
[15]S.A. Gustafson and K.O. Kortanek, ”Numerical solution of a class of semiinfinite programming problems,”Naval Research Logistics Quarterly 20 (1973) 477–504. ·Zbl 0272.90073 ·doi:10.1002/nav.3800200310
[16]R.J. Hillestad, ”Optimization problems subject to a budget constraint with economies of scale,”Operations Research 23 (1975) 1091–1098. ·Zbl 0335.90039 ·doi:10.1287/opre.23.6.1091
[17]R.J. Hillestad and S.E. Jacobsen, ”Reverse convex programming,”Applied Mathematics and Optimization 6 (1980a) 63–78. ·Zbl 0448.90044 ·doi:10.1007/BF01442883
[18]R.J. Hillestad and S.E. Jacobsen, ”Linear programs with an additional reverse convex constraint,”Applied Mathematics and Optimization 6 (1980b) 257–269. ·Zbl 0435.90065 ·doi:10.1007/BF01442898
[19]R.G. Jeroslow, ”Cutting planes for complementarity constraints,”SIAM Journal on Control and Optimization 16 (1978) 56–62. ·Zbl 0395.90076 ·doi:10.1137/0316005
[20]C.E. Lemke, ”Bimatrix equilibrium points and mathematical programming,”Management Science 11 (1965) 681–689. ·Zbl 0139.13103 ·doi:10.1287/mnsc.11.7.681
[21]M. Raghavachari, ”On the zero-one integer programming problem,”Operations Research 17 (1969) 680–685. ·Zbl 0176.49805 ·doi:10.1287/opre.17.4.680
[22]B. Ramarao and C.M. Shetty, ”Development of valid inequalities for disjunctive programming,”Naval Research Logistics Quarterly 31 (1984) 581–600. ·Zbl 0559.90088 ·doi:10.1002/nav.3800310408
[23]R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970). ·Zbl 0193.18401
[24]J.B. Rosen, ”Iterative solution of nonlinear optimal control problems,”SIAM Journal on Control 4 (1966) 223–244. ·Zbl 0229.49025 ·doi:10.1137/0304021
[25]S. Sen and H.D. Sherali, ”On the convergence of cutting plane algorithms for a class of nonconvex mathematical programs,”Mathematical Programming 31 (1985a) 42–56. ·Zbl 0562.90076 ·doi:10.1007/BF02591860
[26]S. Sen and H.D. Sherali, ”A branch and bound algorithm for extreme point mathematical programming problems,”Discrete Applied Mathematics 11 (1985b) 265–280. ·Zbl 0595.90063 ·doi:10.1016/0166-218X(85)90078-2
[27]S. Sen and H.D. Sherali, ”Facet inequalties from simple disjunctions in cutting plane theory,”Mathematical Programming 34 (1986) 72–83. ·Zbl 0582.90077 ·doi:10.1007/BF01582164
[28]S. Sen and A. Whiteson, ”A cone splitting algorithm for reverse convex programming,”Proceedings, IEEE Conference on Systems, Man and Cybernetics (Tucson, AZ, 1985) pp. 656–660.
[29]H.D. Sherali and C.M. Shetty,Optimization with Disjunctive Constraints (Springer-Verlag, Berlin-Heidelberg-New York, 1980a). ·Zbl 0437.90052
[30]H.D. Sherali and C.M. Shetty, ”Deep cuts in disjunctive programming,”Naval Research Logistics Quarterly 27 (1980b) 453–357. ·Zbl 0442.90066 ·doi:10.1002/nav.3800270310
[31]J. Stoer and C. Witzgall,Convexity and Optimization in Finite Dimensions I (Springer-Verlag, Berlin, 1970). ·Zbl 0203.52203
[32]C. Van de Panne,Methods for Linear and Quadratic Programming (North-Holland, Amsterdam, 1974). ·Zbl 0298.90039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp