90C30 | Nonlinear programming |
90C33 | Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming) |
[1] | M. Avriel, ”Methods for solving signomial and reverse convex programming problems,” in: M. Avriel, M.J. Rijckaert and D.J. Wilde, eds.,Optimization and Design (Prentice-Hall, Englewood Cliffs, NJ, 1973) pp. 307–320. |
[2] | M. Avriel,Nonlinear Programming: Analysis and Methods (Prentice-Hall, Englewood Cliffs, NJ, 1976). |
[3] | M. Avriel and A.C. Williams, ”Complementary geometric programming,”SIAM Journal of Applied Mathematics 19 (1970) 125–141. ·Zbl 0319.90035 ·doi:10.1137/0119011 |
[4] | E. Balas, ”Intersection cuts–a new type of cutting planes for integer programming,”Operations Research 19 (1971) 19–39. ·Zbl 0219.90035 ·doi:10.1287/opre.19.1.19 |
[5] | E. Balas, ”Disjunctive programming: Cutting planes from logical conditions,” in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear Programming (Academic Press, New York, 1975) pp. 279–312. ·Zbl 0349.90117 |
[6] | P.P. Bansal and S.E. Jacobsen, ”Characterization of local solutions for a class of nonconvex programs,”Journal of Optimization Theory and Application 15 (1975a) 549–564. ·Zbl 0281.90078 ·doi:10.1007/BF00933745 |
[7] | P.P. Bansal and S.E. Jacobsen, ”An algorithm for optimizing network flow capacity under economies of scale,Journal of Optimization Theory and Application 15 (1975b) 565–586. ·Zbl 0281.90077 ·doi:10.1007/BF00933746 |
[8] | J. Bard and J.E. Falk, ”An explicit solution to the multi-level programming problem”,Computers and Operations Research 9 (1982a) 77–100. ·doi:10.1016/0305-0548(82)90007-7 |
[9] | J. Bard and J.E. Falk, ”A separable programming approach to the linear complementarity problem,”Computers and Operations Research 9 (1982b) 153–159. ·doi:10.1016/0305-0548(82)90014-4 |
[10] | R.W. Cottle and G.B. Dantzig, ”Complementary pivot theory of mathematical programming,”Linear Algebra and Applications 1 (1968) 103–125. ·Zbl 0155.28403 ·doi:10.1016/0024-3795(68)90052-9 |
[11] | R.S. Dembo, ”Solution of complementary geometric programming problems,” M.Sc. Thesis, Technion, Israel Institute of Technology, Haifa (1972). |
[12] | G. Gallo and A. Ulkucu, ”Bilinear programming: An exact algorithm,”Mathematical Programming 12 (1977) 173–194. ·Zbl 0363.90086 ·doi:10.1007/BF01593787 |
[13] | F. Glover, ”Convexity cuts and cut search,”Operations Research 21 (1973) 123–124. ·Zbl 0263.90020 ·doi:10.1287/opre.21.1.123 |
[14] | F. Glover, ”Polyhedral convexity cuts and negative edge extensions,”Zeitschrift für Operations Research 18 (1974) 181–186. ·Zbl 0288.90056 ·doi:10.1007/BF02026599 |
[15] | S.A. Gustafson and K.O. Kortanek, ”Numerical solution of a class of semiinfinite programming problems,”Naval Research Logistics Quarterly 20 (1973) 477–504. ·Zbl 0272.90073 ·doi:10.1002/nav.3800200310 |
[16] | R.J. Hillestad, ”Optimization problems subject to a budget constraint with economies of scale,”Operations Research 23 (1975) 1091–1098. ·Zbl 0335.90039 ·doi:10.1287/opre.23.6.1091 |
[17] | R.J. Hillestad and S.E. Jacobsen, ”Reverse convex programming,”Applied Mathematics and Optimization 6 (1980a) 63–78. ·Zbl 0448.90044 ·doi:10.1007/BF01442883 |
[18] | R.J. Hillestad and S.E. Jacobsen, ”Linear programs with an additional reverse convex constraint,”Applied Mathematics and Optimization 6 (1980b) 257–269. ·Zbl 0435.90065 ·doi:10.1007/BF01442898 |
[19] | R.G. Jeroslow, ”Cutting planes for complementarity constraints,”SIAM Journal on Control and Optimization 16 (1978) 56–62. ·Zbl 0395.90076 ·doi:10.1137/0316005 |
[20] | C.E. Lemke, ”Bimatrix equilibrium points and mathematical programming,”Management Science 11 (1965) 681–689. ·Zbl 0139.13103 ·doi:10.1287/mnsc.11.7.681 |
[21] | M. Raghavachari, ”On the zero-one integer programming problem,”Operations Research 17 (1969) 680–685. ·Zbl 0176.49805 ·doi:10.1287/opre.17.4.680 |
[22] | B. Ramarao and C.M. Shetty, ”Development of valid inequalities for disjunctive programming,”Naval Research Logistics Quarterly 31 (1984) 581–600. ·Zbl 0559.90088 ·doi:10.1002/nav.3800310408 |
[23] | R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970). ·Zbl 0193.18401 |
[24] | J.B. Rosen, ”Iterative solution of nonlinear optimal control problems,”SIAM Journal on Control 4 (1966) 223–244. ·Zbl 0229.49025 ·doi:10.1137/0304021 |
[25] | S. Sen and H.D. Sherali, ”On the convergence of cutting plane algorithms for a class of nonconvex mathematical programs,”Mathematical Programming 31 (1985a) 42–56. ·Zbl 0562.90076 ·doi:10.1007/BF02591860 |
[26] | S. Sen and H.D. Sherali, ”A branch and bound algorithm for extreme point mathematical programming problems,”Discrete Applied Mathematics 11 (1985b) 265–280. ·Zbl 0595.90063 ·doi:10.1016/0166-218X(85)90078-2 |
[27] | S. Sen and H.D. Sherali, ”Facet inequalties from simple disjunctions in cutting plane theory,”Mathematical Programming 34 (1986) 72–83. ·Zbl 0582.90077 ·doi:10.1007/BF01582164 |
[28] | S. Sen and A. Whiteson, ”A cone splitting algorithm for reverse convex programming,”Proceedings, IEEE Conference on Systems, Man and Cybernetics (Tucson, AZ, 1985) pp. 656–660. |
[29] | H.D. Sherali and C.M. Shetty,Optimization with Disjunctive Constraints (Springer-Verlag, Berlin-Heidelberg-New York, 1980a). ·Zbl 0437.90052 |
[30] | H.D. Sherali and C.M. Shetty, ”Deep cuts in disjunctive programming,”Naval Research Logistics Quarterly 27 (1980b) 453–357. ·Zbl 0442.90066 ·doi:10.1002/nav.3800270310 |
[31] | J. Stoer and C. Witzgall,Convexity and Optimization in Finite Dimensions I (Springer-Verlag, Berlin, 1970). ·Zbl 0203.52203 |
[32] | C. Van de Panne,Methods for Linear and Quadratic Programming (North-Holland, Amsterdam, 1974). ·Zbl 0298.90039 |