90C30 | Nonlinear programming |
49M37 | Numerical methods based on nonlinear programming |
65K05 | Numerical mathematical programming methods |
[1] | M. Avriel,Nonlinear Programming: Analysis and Methods (Prentice-Hall, Englewood Cliffs, N.J., 1976). |
[2] | M.S. Bazaraa and C.M. Shetty,Nonlinear Programming: Theory and Algorithms (John Wiley & Sons, New York, 1979). ·Zbl 0476.90035 |
[3] | J. Denel, ”Extensions of the continuity of point-to-set maps: applications to fixed point algorithms,”Mathematical Programming Study 10 (1979) 48–68. ·Zbl 0414.90072 |
[4] | D.-Z. Du, ”A modification of Rosen-Polak’s algorithm,”Kexue Tonbao 28 (1983) 301–305. ·Zbl 0525.90081 |
[5] | C. Goffmand and C. Pedrick, First Course in Functional Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1965). ·Zbl 0122.11206 |
[6] | D. Goldfarb, ”Extension of Davidson’s variable metric method to maximization under linear equality and equality constraints,”SIAM Journal on Applied Mathematics 17 (1969) 739–764. ·Zbl 0185.42602 ·doi:10.1137/0117067 |
[7] | D. Goldfarb and L. Lapidus, ”Conjugate gradient method for nonlinear programming problems with linear constraints,”Industrial and Engineering Chemistry Fundamentals 7 (1968) 142–151. ·doi:10.1021/i160025a024 |
[8] | P. Huard, ”Optimization algorithms and point-to-set maps,”Mathematical Programming 8 (1975) 308–331. ·Zbl 0312.90052 ·doi:10.1007/BF01580449 |
[9] | D.G. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, Mass., 1973). ·Zbl 0297.90044 |
[10] | R.R. Meyer, ”The validity of a family of optimization methods,”SIAM Journal on Control and Optimization 8 (1970) 41–54. ·Zbl 0194.20501 ·doi:10.1137/0308003 |
[11] | R.R. Meyer ”Sufficient conditions for the convergence of monotonic mathematical programming algorithms,”Journal of Computer and System Sciences 12 (1976) 108–121. ·Zbl 0337.65037 ·doi:10.1016/S0022-0000(76)80021-9 |
[12] | B.A. Murtagh and R.W.H. Sargent, ”A constrained minimization method with quadratic convergence,” in R. Fletcher, ed.,Optimization (Academic Press, New York, 1969) 215–246. ·Zbl 0214.42401 |
[13] | E. Palak, ”On the convergence of optimization algorithms,” Revue Francaise d’Informatique et de Recherche Operationelle 3 (1969) 17–34. |
[14] | E. Polak,Computational Methods in Optimization (Academic Press, New York, 1971). ·Zbl 0257.90055 |
[15] | J.B. Rosen, ”The gradient projection method for nonlinear programming, Part 1: linear constraints,”SIAM Journal on Applied Mathematics 8 (1960) 181–217. ·Zbl 0099.36405 ·doi:10.1137/0108011 |
[16] | J.B. Rosen, ”The gradient projection method for nonlinear programming, Part 2: nonlinear constraints,”SIAM Journal on Applied Mathematics 9 (1961) 514–553. ·Zbl 0231.90048 ·doi:10.1137/0109044 |
[17] | W.I. Zangwill, ”Convergence conditions for nonlinear programming algorithms,”Management Science 16 (1969) 1–13. ·Zbl 0191.49101 ·doi:10.1287/mnsc.16.1.1 |
[18] | W.I. Zangwill,Nonlinear Programming: A Unified Approach (Prentice-Hall, Englewood Cliffs, N.J., 1969). |
[19] | X.-S. Zhang, ”An improved Rosen-Polak method,”Acta Mathematicae Applacatae Sinica 2 (1979) 257–267 (in Chinese). |
[20] | X.-S. Zhang, ”Discussion on Polak’s algorithm of nonlinear programming,”Acta Mathematicae Applacatae Sinica 4 (1981) 1–13 (in Chinese). ·Zbl 0485.90077 |
[21] | X.-S. Zhang, ”On the convergence of Rosen’s gradient projection method: Three-dimensional case,”Acta Mathematicae Applacatae Sinica 8 (1985) (in Chinese). |