Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A convergence theorem of Rosen’s gradient projection method.(English)Zbl 0626.90077

This paper offers a convergence theorem for Rosen’s gradient projection method. Since the method was published in 1960 a rigorous convergence proof has remained an open question.
For f(x)\(\to \max\), \(A^ tx\geq b\) let \(J(x)=\{f:\) \(a^ T_ jx=b_ j\}\), \(J^ k=J(x^ k)\), \(P_{Jk}=I-A_{Jk}(A^ T_{Jk}A_{Jk})^{-1}A^ T_{Jk}\), \(u^ k_ h=\max \{(A^ T_{Jk}A_{Jk})^{-1}A^ T_{Jk}f'(x^ k)_{(j)}| j\in J^ k\}.\)
In Rosen’s method at step k we choose \[ d^ k=\{P_{Jk}f(x^ k)\;if\;\| P_{Jk}f(x^ k)\| >cu^ k_ h,\quad d^ k=P_{J^ k\setminus \{h\}}f(x^ k)\quad else \] and use a line search process to find a new point \(x^{k+1}=x^ k+\lambda^ kd^ k\). In the paper conditions for the constant c are given that guarantee global convergence. The authors believe that the algorithm will be convergent for any \(c>0\).
Reviewer: E.Iwanow

MSC:

90C30 Nonlinear programming
49M37 Numerical methods based on nonlinear programming
65K05 Numerical mathematical programming methods

Cite

References:

[1]M. Avriel,Nonlinear Programming: Analysis and Methods (Prentice-Hall, Englewood Cliffs, N.J., 1976).
[2]M.S. Bazaraa and C.M. Shetty,Nonlinear Programming: Theory and Algorithms (John Wiley & Sons, New York, 1979). ·Zbl 0476.90035
[3]J. Denel, ”Extensions of the continuity of point-to-set maps: applications to fixed point algorithms,”Mathematical Programming Study 10 (1979) 48–68. ·Zbl 0414.90072
[4]D.-Z. Du, ”A modification of Rosen-Polak’s algorithm,”Kexue Tonbao 28 (1983) 301–305. ·Zbl 0525.90081
[5]C. Goffmand and C. Pedrick, First Course in Functional Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1965). ·Zbl 0122.11206
[6]D. Goldfarb, ”Extension of Davidson’s variable metric method to maximization under linear equality and equality constraints,”SIAM Journal on Applied Mathematics 17 (1969) 739–764. ·Zbl 0185.42602 ·doi:10.1137/0117067
[7]D. Goldfarb and L. Lapidus, ”Conjugate gradient method for nonlinear programming problems with linear constraints,”Industrial and Engineering Chemistry Fundamentals 7 (1968) 142–151. ·doi:10.1021/i160025a024
[8]P. Huard, ”Optimization algorithms and point-to-set maps,”Mathematical Programming 8 (1975) 308–331. ·Zbl 0312.90052 ·doi:10.1007/BF01580449
[9]D.G. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, Mass., 1973). ·Zbl 0297.90044
[10]R.R. Meyer, ”The validity of a family of optimization methods,”SIAM Journal on Control and Optimization 8 (1970) 41–54. ·Zbl 0194.20501 ·doi:10.1137/0308003
[11]R.R. Meyer ”Sufficient conditions for the convergence of monotonic mathematical programming algorithms,”Journal of Computer and System Sciences 12 (1976) 108–121. ·Zbl 0337.65037 ·doi:10.1016/S0022-0000(76)80021-9
[12]B.A. Murtagh and R.W.H. Sargent, ”A constrained minimization method with quadratic convergence,” in R. Fletcher, ed.,Optimization (Academic Press, New York, 1969) 215–246. ·Zbl 0214.42401
[13]E. Palak, ”On the convergence of optimization algorithms,” Revue Francaise d’Informatique et de Recherche Operationelle 3 (1969) 17–34.
[14]E. Polak,Computational Methods in Optimization (Academic Press, New York, 1971). ·Zbl 0257.90055
[15]J.B. Rosen, ”The gradient projection method for nonlinear programming, Part 1: linear constraints,”SIAM Journal on Applied Mathematics 8 (1960) 181–217. ·Zbl 0099.36405 ·doi:10.1137/0108011
[16]J.B. Rosen, ”The gradient projection method for nonlinear programming, Part 2: nonlinear constraints,”SIAM Journal on Applied Mathematics 9 (1961) 514–553. ·Zbl 0231.90048 ·doi:10.1137/0109044
[17]W.I. Zangwill, ”Convergence conditions for nonlinear programming algorithms,”Management Science 16 (1969) 1–13. ·Zbl 0191.49101 ·doi:10.1287/mnsc.16.1.1
[18]W.I. Zangwill,Nonlinear Programming: A Unified Approach (Prentice-Hall, Englewood Cliffs, N.J., 1969).
[19]X.-S. Zhang, ”An improved Rosen-Polak method,”Acta Mathematicae Applacatae Sinica 2 (1979) 257–267 (in Chinese).
[20]X.-S. Zhang, ”Discussion on Polak’s algorithm of nonlinear programming,”Acta Mathematicae Applacatae Sinica 4 (1981) 1–13 (in Chinese). ·Zbl 0485.90077
[21]X.-S. Zhang, ”On the convergence of Rosen’s gradient projection method: Three-dimensional case,”Acta Mathematicae Applacatae Sinica 8 (1985) (in Chinese).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp