Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Global convergence of the partitioned BFGS algorithm for convex partially separable optimization.(English)Zbl 0626.90076

To overcome the difficulty of the Broyden-Fletcher-Goldfarb-Shanno method with large scale problems, Griewank and Toint have earlier proposed “partitioned updating” algorithms which exploit the fact that in many such problems the objective function has the form \(f(x)=\sum^{m}_{i=1}f_ i(x)\), where each function \(f_ i\) only depends on a few components of x. In the reviewed paper the author presents a proof of the global convergence for a partitioned updating algorithm when each \(f_ i\) is convex (and some additional conditions are fulfilled). Inexact solution of the linear system defining the search direction and variants of the steplength rule are also shown to be acceptable without affecting the global convergence properties.
Reviewer: H.Tuy

MSC:

90C30 Nonlinear programming
90C25 Convex programming
65K05 Numerical mathematical programming methods
49M37 Numerical methods based on nonlinear programming

Software:

ve08

Cite

References:

[1]M. Abramowitz and I.A. Stegun,Handbook of Mathematical Functions (Dover Publications, New-York, 1968). ·Zbl 0171.38503
[2]R.S. Dembo, S.C. Eisenstat and T. Steihaug, ”Inexact Newton methods”,SIAM Journal of Numerical Anal. 19 (1982) 400–408. ·Zbl 0478.65030 ·doi:10.1137/0719025
[3]R. Fletcher, ”A new approach to variable metric algorithms”,Computer Journal 13 (1970) 317–322. ·Zbl 0207.17402 ·doi:10.1093/comjnl/13.3.317
[4]A. Griewank and Ph.L. Toint, ”On the unconstrained optimization of partially separable functions”, in: M.J.D. Powell, ed.,Nonlinear Optimization (Academic Press, New-York, 1981). ·Zbl 0563.90085
[5]A. Griewank and Ph.L. Toin, ”Partitioned variable metric updates for large structured optimization problems”,Numerische Mathematik 39 (1982) 119–137. ·Zbl 0482.65035 ·doi:10.1007/BF01399316
[6]A. Griewank and Ph.L. Toint, ”Local convergence analysis for partitioned quasi-Newton updates”,Numerische Mathematik 39 (1982) 429–448. ·Zbl 0505.65018 ·doi:10.1007/BF01407874
[7]A. Griewank and Ph.L. Toint, ”Numerical experiments with partially separable optimization problems”, in: D.F. Griffiths, ed.Numerical Analysis, Proceedings Dundee 1983 (Lecture Notes in Mathematics 1066, Springer-Verlag, Berlin, 1984). ·Zbl 0531.65033
[8]J.M. Ortega and W.C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New-York, 1970). ·Zbl 0241.65046
[9]M.J.D. Powell, ”Some global convergence properties of a variable metric algorithm for minimization without exact line searches”,SIAM-AMS Proceedings 9 (1976) 53–72. ·Zbl 0338.65038
[10]W. Warth and J. Werner, ”Effiziente Schrittweitenfunktionen bei unrestringierten Optimierungs-aufgaben,”Computing 19 (1) (1977) 59–72. ·Zbl 0367.90101 ·doi:10.1007/BF02260741
[11]J. Werner, ”Über die globale Konvergenz von Variable-Metric Verfahren mit nichtexakter Schritt-weitenbestimmung”,Numerische Mathematik 31 (1978) 321–334. ·Zbl 0427.65047 ·doi:10.1007/BF01397884
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp