[1] | J. Abadie, ”Méthode du gradient réduit généralisé: Le code GRGA”, Note HI 1756/00, Electricité de France (Paris, 1975). |
[2] | J. Abadie and J. Carpentier, ”Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints”, in: R. Fletcher, ed.,Optimization (Academic Press, New York, 1969) pp. 37–49. ·Zbl 0254.90049 |
[3] | D.P. Bertsekas, ”On penalty and multiplier methods for constrained minimization”,SIAM Journal on Control and Optimization 14 (1978) 216–235. ·Zbl 0324.49029 ·doi:10.1137/0314017 |
[4] | M.C. Biggs, ”Constrained minimization using recursive equality quadratic programming”, in: F.A. Lootsma, ed.,Numerical Methods for Nonlinear Optimization (Academic Press, London, New York, 1971) pp. 411–428. |
[5] | M.C. Biggs, ”On the convergence of some constrained minimization algorithms based on recursive quadratic programming”,Journal of the Institute of Mathematics and Its Applications 21 (1978) 67–82. ·Zbl 0373.90056 ·doi:10.1093/imamat/21.1.67 |
[6] | M.C. Bartholomew-Biggs, ”An improved implementation of the recursive quadratic programming method for constrained minimization”, Technical Report 105, Numerical Optimisation Centre, The Hatfield Polytechnic, (Hatfield England, 1979). ·Zbl 0397.65023 |
[7] | Bui-Trong-Lieu and P. Huard, ”La méthode des centres dans un espace topologique”,Numerische Mathematik 8 (1966) 65–67. ·Zbl 0171.40802 ·doi:10.1007/BF02165238 |
[8] | C. Charambolus, ”Nonlinear least path optimization and nonlinear programming”,Mathematical Programming 12 (1977) 195–225. ·Zbl 0374.90061 ·doi:10.1007/BF01593788 |
[9] | R.A. Colville, ”A comparative study on nonlinear programming codes”, Report 320-2949, IBM Scientific Center (New York, 1968). ·Zbl 0224.90069 |
[10] | R. Fletcher, ”Methods for nonlinear constraints”, in: M.J.D. Powell, ed.,Nonlinear Optimization 1981, NATO Conference series (Academic Press, London, New York, 1982) pp. 185–211. ·Zbl 0548.90058 |
[11] | D. Gabay, ”Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization”,Mathematical Programming Study 16 (1982) 18–44 ·Zbl 0477.90065 ·doi:10.1007/BFb0120946 |
[12] | S.P. Han, ”Superlinearly convergent variable metric algorithms for general nonlinear programming problems”,Mathematical Programming 11 (1976) 263–282. ·Zbl 0364.90097 ·doi:10.1007/BF01580395 |
[13] | S.P. Han, ”A globally convergent method for nonlinear programming”,Journal of Optimization Theory and Applications 22 (1977) 297–309. ·Zbl 0336.90046 ·doi:10.1007/BF00932858 |
[14] | J. Herskovits and N. Zouain, ”A nonlinear programming algorithm for structural optimization problems”, Report 7-79, Programa de Engenharia Mecânica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1979. ·Zbl 0451.73092 |
[15] | W. Hock and K. Schittkowski, ”Test examples for nonlinear programming codes”, Lecture Notes in Economics and Mathematical Systems 187 (Springer-Verlag, Berlin, 1981). ·Zbl 0452.90038 |
[16] | P. Huard, ”Programation mathématique convèxe”,Revue Française d’Informatique et Recherche Opérationnelle 7 (1968) 43–59. |
[17] | D.G. Luenberger,Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1973). ·Zbl 0297.90044 |
[18] | D.Q. Mayne and E. Polak, ”Feasible direction algorithms for optimization problems with equality and inequality constraints”,Mathematical Programming 11 (1976) 67–80. ·Zbl 0351.90067 ·doi:10.1007/BF01580371 |
[19] | O. Pironneau and E. Polak, ”A dual method for optimal control problems”,SIAM Journal on Control 11 (1973) 534–549. ·doi:10.1137/0311042 |
[20] | E. Polak,Computational Methods in Optimization (Academic Press, New York, 1971). ·Zbl 0257.90055 |
[21] | M.J.D. Powell, ”A fast algorithm for nonlinearly constrained optimization calculations”, in: G.A. Watson, ed.,Numerical Analysis, Dundee, 1977, Lecture Notes in Mathematics 630 (Springer-Verlag, Berlin, 1978) pp. 144–157. |
[22] | M.J.D. Powell, ”The convergence of varible metric methods for nonlinearly constrained optimization calculation”, in: O.L. Mangasarian, R.R Meyer and S.M. Robinson, eds.,Nonlinear Programming 3 (Academic Press, New York, 1978) pp. 27–63. |
[23] | M.J.D. Powell, ”Algorithms for nonlinear constraints that use Lagrangian functions”,Mathematical Programming 14 (1978) 224–248. ·Zbl 0383.90092 ·doi:10.1007/BF01588967 |
[24] | R.W.H. Sargent, ”Reduced-gradient and projection methods for nonlinear programming”, in: P.E. Gill and W. Murray, eds.,Numerical Methods for Constrained Optimization (Academic Press, New York, 1974) pp. 149–174. |
[25] | S. Segenreich, N. Zouain and J. Herskovits, ”An optimality criteria method based on slack variables concept for large structural optimization”, in:Proceedings of the Symposium on Applications of Computer Methods in Engineering (Los Angeles, USA, 1977) pp. 563–572. |
[26] | R.A. Tapia, ”Diagonalized multiplier methods and quasi-Newton methods for constrained optimization”,Journal of Optimization Theory and Applications 22 (1977) 135–194. ·Zbl 0336.65034 ·doi:10.1007/BF00933161 |
[27] | D.M. Topkis and A.R. Veinott Jr., ”On the convergence of some feasible direction algorithms for nonlinear programming”,Journal on SIAM Control 5 (1967) 268–279. ·Zbl 0158.18805 ·doi:10.1137/0305018 |
[28] | G. Zoutendijk,Methods of Feasible Directions (Elsevier, Amsterdam, 1960). ·Zbl 0097.35408 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.