Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A two-stage feasible directions algorithm for nonlinear constrained optimization.(English)Zbl 0623.90070

The nonlinear programming problem with equality and inequality constraints is considered. The algorithm for solving this problem is suggested. At each iteration a feasible direction is computed in two stages. First a descent direction is defined then, by modification, a feasible descent direction is obtained. The global convergence of the algorithm is proved. Numerical results are reported.
Reviewer: V.Krakhotko

MSC:

90C30 Nonlinear programming
65K05 Numerical mathematical programming methods

Cite

References:

[1]J. Abadie, ”Méthode du gradient réduit généralisé: Le code GRGA”, Note HI 1756/00, Electricité de France (Paris, 1975).
[2]J. Abadie and J. Carpentier, ”Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints”, in: R. Fletcher, ed.,Optimization (Academic Press, New York, 1969) pp. 37–49. ·Zbl 0254.90049
[3]D.P. Bertsekas, ”On penalty and multiplier methods for constrained minimization”,SIAM Journal on Control and Optimization 14 (1978) 216–235. ·Zbl 0324.49029 ·doi:10.1137/0314017
[4]M.C. Biggs, ”Constrained minimization using recursive equality quadratic programming”, in: F.A. Lootsma, ed.,Numerical Methods for Nonlinear Optimization (Academic Press, London, New York, 1971) pp. 411–428.
[5]M.C. Biggs, ”On the convergence of some constrained minimization algorithms based on recursive quadratic programming”,Journal of the Institute of Mathematics and Its Applications 21 (1978) 67–82. ·Zbl 0373.90056 ·doi:10.1093/imamat/21.1.67
[6]M.C. Bartholomew-Biggs, ”An improved implementation of the recursive quadratic programming method for constrained minimization”, Technical Report 105, Numerical Optimisation Centre, The Hatfield Polytechnic, (Hatfield England, 1979). ·Zbl 0397.65023
[7]Bui-Trong-Lieu and P. Huard, ”La méthode des centres dans un espace topologique”,Numerische Mathematik 8 (1966) 65–67. ·Zbl 0171.40802 ·doi:10.1007/BF02165238
[8]C. Charambolus, ”Nonlinear least path optimization and nonlinear programming”,Mathematical Programming 12 (1977) 195–225. ·Zbl 0374.90061 ·doi:10.1007/BF01593788
[9]R.A. Colville, ”A comparative study on nonlinear programming codes”, Report 320-2949, IBM Scientific Center (New York, 1968). ·Zbl 0224.90069
[10]R. Fletcher, ”Methods for nonlinear constraints”, in: M.J.D. Powell, ed.,Nonlinear Optimization 1981, NATO Conference series (Academic Press, London, New York, 1982) pp. 185–211. ·Zbl 0548.90058
[11]D. Gabay, ”Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization”,Mathematical Programming Study 16 (1982) 18–44 ·Zbl 0477.90065 ·doi:10.1007/BFb0120946
[12]S.P. Han, ”Superlinearly convergent variable metric algorithms for general nonlinear programming problems”,Mathematical Programming 11 (1976) 263–282. ·Zbl 0364.90097 ·doi:10.1007/BF01580395
[13]S.P. Han, ”A globally convergent method for nonlinear programming”,Journal of Optimization Theory and Applications 22 (1977) 297–309. ·Zbl 0336.90046 ·doi:10.1007/BF00932858
[14]J. Herskovits and N. Zouain, ”A nonlinear programming algorithm for structural optimization problems”, Report 7-79, Programa de Engenharia Mecânica, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1979. ·Zbl 0451.73092
[15]W. Hock and K. Schittkowski, ”Test examples for nonlinear programming codes”, Lecture Notes in Economics and Mathematical Systems 187 (Springer-Verlag, Berlin, 1981). ·Zbl 0452.90038
[16]P. Huard, ”Programation mathématique convèxe”,Revue Française d’Informatique et Recherche Opérationnelle 7 (1968) 43–59.
[17]D.G. Luenberger,Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1973). ·Zbl 0297.90044
[18]D.Q. Mayne and E. Polak, ”Feasible direction algorithms for optimization problems with equality and inequality constraints”,Mathematical Programming 11 (1976) 67–80. ·Zbl 0351.90067 ·doi:10.1007/BF01580371
[19]O. Pironneau and E. Polak, ”A dual method for optimal control problems”,SIAM Journal on Control 11 (1973) 534–549. ·doi:10.1137/0311042
[20]E. Polak,Computational Methods in Optimization (Academic Press, New York, 1971). ·Zbl 0257.90055
[21]M.J.D. Powell, ”A fast algorithm for nonlinearly constrained optimization calculations”, in: G.A. Watson, ed.,Numerical Analysis, Dundee, 1977, Lecture Notes in Mathematics 630 (Springer-Verlag, Berlin, 1978) pp. 144–157.
[22]M.J.D. Powell, ”The convergence of varible metric methods for nonlinearly constrained optimization calculation”, in: O.L. Mangasarian, R.R Meyer and S.M. Robinson, eds.,Nonlinear Programming 3 (Academic Press, New York, 1978) pp. 27–63.
[23]M.J.D. Powell, ”Algorithms for nonlinear constraints that use Lagrangian functions”,Mathematical Programming 14 (1978) 224–248. ·Zbl 0383.90092 ·doi:10.1007/BF01588967
[24]R.W.H. Sargent, ”Reduced-gradient and projection methods for nonlinear programming”, in: P.E. Gill and W. Murray, eds.,Numerical Methods for Constrained Optimization (Academic Press, New York, 1974) pp. 149–174.
[25]S. Segenreich, N. Zouain and J. Herskovits, ”An optimality criteria method based on slack variables concept for large structural optimization”, in:Proceedings of the Symposium on Applications of Computer Methods in Engineering (Los Angeles, USA, 1977) pp. 563–572.
[26]R.A. Tapia, ”Diagonalized multiplier methods and quasi-Newton methods for constrained optimization”,Journal of Optimization Theory and Applications 22 (1977) 135–194. ·Zbl 0336.65034 ·doi:10.1007/BF00933161
[27]D.M. Topkis and A.R. Veinott Jr., ”On the convergence of some feasible direction algorithms for nonlinear programming”,Journal on SIAM Control 5 (1967) 268–279. ·Zbl 0158.18805 ·doi:10.1137/0305018
[28]G. Zoutendijk,Methods of Feasible Directions (Elsevier, Amsterdam, 1960). ·Zbl 0097.35408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp