Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

An exact penalty function for semi-infinite programming.(English)Zbl 0623.90069

The authors describe an exact penalty function for nonlinear semi- infinite programming. This function is a generalization of the \(\ell_ 1\) exact penalty function for nonlinear programming and may be used as a merit function for semi-infinite programming methods. The convex case as well as the nonconvex case (using some quadratic approximations) are considered. Moreover, an integral-inequality and asymptotic formula for certain functions have been proved; these results may be of more general interest.
Reviewer: R.Nehse

MSC:

90C30 Nonlinear programming
90C34 Semi-infinite programming
65K05 Numerical mathematical programming methods
49M37 Numerical methods based on nonlinear programming
49M30 Other numerical methods in calculus of variations (MSC2010)
90C25 Convex programming

Cite

References:

[1]T.M. Apostol,Mathematical Analysis, 2nd edition (Addison-Wesley, Reading, MA., 1974). ·Zbl 0309.26002
[2]D.P. Bertsekas,Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, 1982). ·Zbl 0572.90067
[3]J.M. Borwein, ”Semi-infinite programming duality: how special is it?,” in: A.V. Fiacco and K.O. Kortanek, eds.Semi-Infinite Programming and Applications, Lecture notes in economic and mathematical systems 215 (Springer-Verlag, New York 1983) pp. 10–36. ·Zbl 0514.49019
[4]T.F. Coleman and D.C. Sorensen, ”A note on the computation of an orthonormal basis for the null space of a matrix,”Mathematical Programming 29 (1984) 234–242. ·Zbl 0539.65020 ·doi:10.1007/BF02592223
[5]A.R. Conn and T. Pietrzykowski, ”A penalty function method converging directly to a constrained optimum,”SIAM Journal on Numerical Analysis 14 (1977) 348–375. ·Zbl 0361.90076 ·doi:10.1137/0714022
[6]I.D. Coope and G.A. Watson, ”A projected Lagrangian algorithm for semi-infinite programming,”Mathematical Programming 32 (1985) 337–356. ·Zbl 0572.90082 ·doi:10.1007/BF01582053
[7]J. Edwards,A Treatise on the Integral Calculus, with Applications, Examples and Problems, Volume 2 (Macmillan, London, 1922).
[8]I.I. Eremin and VI.D. Mazurov, ”Iterationmethon for solving problems of convex programming,”Soviet Physics-Doklady 9 (1967) 757–759. ·Zbl 0155.28404
[9]A.V. Fiacco and K.O. Kortanek, eds.,Semi-Infinite Programming and Applications, Lecture notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983). ·Zbl 0504.00017
[10]Yu. B. Germeyer, ”Approximate reduction of the problem of determining a maximum by means of penalty functions,”USSR Computational Mathematics and Mathematical Physics 9 (1969) 325–328. ·Zbl 0263.90039 ·doi:10.1016/0041-5553(69)90086-X
[11]H. Gfrerer, J. Guddat, Hj Wacker and W. Zulehner, ”Globalization of locally convergent algorithms for nonlinear optimization problems with constraints,” in: A.V. Fiacco and K.O. Kortanek, eds., Lecture notes in economic and mathematical system 215 (Springer-Verlag, New York, 1983) pp. 128–137. ·Zbl 0515.65050
[12]P.E. Gill, W. Murray and M.H. Wright,Practical Optimization (Academic Press, New York, 1981). ·Zbl 0503.90062
[13]S.-A. Gustafson, ”A three-phase algorithm for semi-infinite programs”, in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-Infinite Programming and Applications, Lecture, notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983) pp. 138–157.
[14]R. Hettich, ed.,Semi-infinite Programming, Lecture notes in control and information sciences 15 (Springer-Verlag, New York, 1979). ·Zbl 0406.90063
[15]R. Hettich and W. Van Honstede, ”On quadratically convergent methods for semi-infinite programming,” in: R. Hettich, ed.,Semi-infinite Programming, Lecture notes in control and information science 15 (Springer-Verlag, New York, 1979) pp. 97–111. ·Zbl 0407.90074
[16]T. Pietrzykowski, ”An exact potential method for constrained maxima,”SIAM Journal of Numerical Analysis 6 (1969) 299–304. ·Zbl 0181.46501 ·doi:10.1137/0706028
[17]T. Pietrzykowski, ”The potential method for conditional maxima in locally compact metric spaces,”Numerische Mathematik 14 (1970) 325–329. ·Zbl 0195.46304 ·doi:10.1007/BF02165588
[18]R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, N.J., 1970). ·Zbl 0193.18401
[19]G.A. watson, ”Globally convergent methods for semi-infinite programming,”Nordisk Tidskrift for Informationsbehandling (BIT) 21 (1981) 36–373. ·Zbl 0476.65049
[20]G.A. Watson, ”Numerical experiments with globally convergent methods for semi-infinite programming problems,” in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-infinite Programming and Applications, Lecture notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983) pp. 193–205. ·Zbl 0513.65040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp