90C30 | Nonlinear programming |
90C34 | Semi-infinite programming |
65K05 | Numerical mathematical programming methods |
49M37 | Numerical methods based on nonlinear programming |
49M30 | Other numerical methods in calculus of variations (MSC2010) |
90C25 | Convex programming |
[1] | T.M. Apostol,Mathematical Analysis, 2nd edition (Addison-Wesley, Reading, MA., 1974). ·Zbl 0309.26002 |
[2] | D.P. Bertsekas,Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, 1982). ·Zbl 0572.90067 |
[3] | J.M. Borwein, ”Semi-infinite programming duality: how special is it?,” in: A.V. Fiacco and K.O. Kortanek, eds.Semi-Infinite Programming and Applications, Lecture notes in economic and mathematical systems 215 (Springer-Verlag, New York 1983) pp. 10–36. ·Zbl 0514.49019 |
[4] | T.F. Coleman and D.C. Sorensen, ”A note on the computation of an orthonormal basis for the null space of a matrix,”Mathematical Programming 29 (1984) 234–242. ·Zbl 0539.65020 ·doi:10.1007/BF02592223 |
[5] | A.R. Conn and T. Pietrzykowski, ”A penalty function method converging directly to a constrained optimum,”SIAM Journal on Numerical Analysis 14 (1977) 348–375. ·Zbl 0361.90076 ·doi:10.1137/0714022 |
[6] | I.D. Coope and G.A. Watson, ”A projected Lagrangian algorithm for semi-infinite programming,”Mathematical Programming 32 (1985) 337–356. ·Zbl 0572.90082 ·doi:10.1007/BF01582053 |
[7] | J. Edwards,A Treatise on the Integral Calculus, with Applications, Examples and Problems, Volume 2 (Macmillan, London, 1922). |
[8] | I.I. Eremin and VI.D. Mazurov, ”Iterationmethon for solving problems of convex programming,”Soviet Physics-Doklady 9 (1967) 757–759. ·Zbl 0155.28404 |
[9] | A.V. Fiacco and K.O. Kortanek, eds.,Semi-Infinite Programming and Applications, Lecture notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983). ·Zbl 0504.00017 |
[10] | Yu. B. Germeyer, ”Approximate reduction of the problem of determining a maximum by means of penalty functions,”USSR Computational Mathematics and Mathematical Physics 9 (1969) 325–328. ·Zbl 0263.90039 ·doi:10.1016/0041-5553(69)90086-X |
[11] | H. Gfrerer, J. Guddat, Hj Wacker and W. Zulehner, ”Globalization of locally convergent algorithms for nonlinear optimization problems with constraints,” in: A.V. Fiacco and K.O. Kortanek, eds., Lecture notes in economic and mathematical system 215 (Springer-Verlag, New York, 1983) pp. 128–137. ·Zbl 0515.65050 |
[12] | P.E. Gill, W. Murray and M.H. Wright,Practical Optimization (Academic Press, New York, 1981). ·Zbl 0503.90062 |
[13] | S.-A. Gustafson, ”A three-phase algorithm for semi-infinite programs”, in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-Infinite Programming and Applications, Lecture, notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983) pp. 138–157. |
[14] | R. Hettich, ed.,Semi-infinite Programming, Lecture notes in control and information sciences 15 (Springer-Verlag, New York, 1979). ·Zbl 0406.90063 |
[15] | R. Hettich and W. Van Honstede, ”On quadratically convergent methods for semi-infinite programming,” in: R. Hettich, ed.,Semi-infinite Programming, Lecture notes in control and information science 15 (Springer-Verlag, New York, 1979) pp. 97–111. ·Zbl 0407.90074 |
[16] | T. Pietrzykowski, ”An exact potential method for constrained maxima,”SIAM Journal of Numerical Analysis 6 (1969) 299–304. ·Zbl 0181.46501 ·doi:10.1137/0706028 |
[17] | T. Pietrzykowski, ”The potential method for conditional maxima in locally compact metric spaces,”Numerische Mathematik 14 (1970) 325–329. ·Zbl 0195.46304 ·doi:10.1007/BF02165588 |
[18] | R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, N.J., 1970). ·Zbl 0193.18401 |
[19] | G.A. watson, ”Globally convergent methods for semi-infinite programming,”Nordisk Tidskrift for Informationsbehandling (BIT) 21 (1981) 36–373. ·Zbl 0476.65049 |
[20] | G.A. Watson, ”Numerical experiments with globally convergent methods for semi-infinite programming problems,” in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-infinite Programming and Applications, Lecture notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983) pp. 193–205. ·Zbl 0513.65040 |