90C30 | Nonlinear programming |
90C20 | Quadratic programming |
65K05 | Numerical mathematical programming methods |
[1] | D.H. Anderson and M.R. Osborne, ”Discrete, nonlinear approximation problems in polyhedral norms,”Numerische Mathematik 28 (1977) 143–156. ·Zbl 0342.65004 ·doi:10.1007/BF01394449 |
[2] | D.H. Anderson and M.R. Osborne, ”Discrete, nonlinear approximation problems in polyhedral norms–A Levenberg-like algorithm,”Numerische Mathematik 28 (1977) 157–170. ·Zbl 0342.65005 ·doi:10.1007/BF01394450 |
[3] | L. Cromme, ”Strong uniqueness: A far reaching criterion for the convergence analysis of iterative procedures,”Numerische Mathematik 29 (1978) 179–194. ·Zbl 0352.65012 ·doi:10.1007/BF01390337 |
[4] | R.S. Dembo, S. Eisenstat and T. Steihaug, ”Inexact Newton methods,”SIAM Journal on Numerical Analysis 19 (1982) 400–408. ·Zbl 0478.65030 ·doi:10.1137/0719025 |
[5] | R.S. Dembo and T. Steihaug, ”Truncated Newton algorithms for large-scale unconstrained optimization,”Mathematical Programming 26 (1983) 190–212. ·Zbl 0523.90078 ·doi:10.1007/BF02592055 |
[6] | R.S. Dembo and U. Tulowitzki, ”Sequential truncated quadratic programming methods,” in: P.T. Boggs, R.H. Byrd and R.B. Schabel, eds,Numerical Optimization 1984 (SIAM, Philadelphia, 1985) pp. 83–101. ·Zbl 0583.65042 |
[7] | R. Fletcher, ”Methods related to Lagrangian functions,” in: P.E. Gill and W. Murray, eds.,Numerical Methods for Constrained Optimization (Academic Press, London and New York, 1974) pp. 29–66. |
[8] | R. Fletcher,Practical Methods of Optimization, Vol. 2: Constrained Optimization (John Wiley, Chichester and New York, 1981). ·Zbl 0474.65043 |
[9] | R. Fletcher, ”Second-order corrections for nondifferentiable optimization,” in: G.A. Watson, ed.,Numerical Analysis, Proceedings, Dundee, 1981 (Springer-Verlag, 1982), pp. 85–114. |
[10] | R. Fletcher, ”Anl t penalty method for nonlinear constraints,” in: P.T. Boggs, R.H. Byrd and R.B. Schnabel, eds.,Numerical Optimization 1984 (SIAM, Philadelphia, 1985) pp. 102–118. |
[11] | R. Fontecilla, ”On inexact quasi-Newton methods for constrained optimization,” in: P.T. Boggs, R.B. Byrd and R.B. Schnabel, eds.,Numerical Optimization 1984 (SIAM, Philadelphia, 1985) pp. 102–118. |
[12] | J. Goodman, ”Newton’s method for constrained optimization,”Mathematical Programming 33 (1985) 162–171. ·Zbl 0589.90065 ·doi:10.1007/BF01582243 |
[13] | K. Jittorntrum and M.R. Osborne, ”Strong uniqueness and second-order convergence in nonlinear discrete approximation,”Numerische Mathematik 34 (1980) 439–455. ·Zbl 0486.65008 ·doi:10.1007/BF01403680 |
[14] | R.A. McLean and G.A. Watson, ”Numerical methods for nonlinear discretel t approximation problems,” in: L. Collatz, G. Meinardus, and H. Werner, eds.,Numerical Methods of Approximation Theory: Excerpts of the Conference at Oberwolfach, 1979 (Birkhauser-Verlag, Basel, 1980). |
[15] | W. Murray and M.L. Overton, ”A projected Lagrangian algorithm for nonlinear minimax optimization,”SIAM Journal of Scientific and Statistical Computing 1 (1980) 345–370. ·Zbl 0461.65052 ·doi:10.1137/0901025 |
[16] | W. Murray and M.L. Overton, ”A projected Lagrangian algorithm for nonlinearl t optimization,”SIAM Journal on Scientific and Statistical Computing 2 (1981) 207–224. ·Zbl 0468.65036 ·doi:10.1137/0902018 |
[17] | J. Nocedal and M.L. Overton, ”Projected Hessian updating algorithms for nonlinearly constrained optimization,”SIAM Journal on Numerical Analysis 22 (1985) 821–850. ·Zbl 0593.65043 ·doi:10.1137/0722050 |
[18] | M.L. Overton, ”Algorithms for nonlinearl t andl fitting,” in: M.J.D. Powell, ed.,Nonlinear Optimization 1981, (Academic Press, 1982) pp. 91–102. |
[19] | R.A. Tapia, ”Diagonalized multiplier methods and quasi-Newton methods for constrained optimization,”Journal of Optimization Theory and its Applications 22 (1977) 135–194. ·Zbl 0336.65034 ·doi:10.1007/BF00933161 |
[20] | G.A. Watson, ”The minimax solution of an overdetermined system of nonlinear equations,”Journal of the Institute of Mathematics and its Applications 23 (1979) 167–180. ·Zbl 0406.65025 ·doi:10.1093/imamat/23.2.167 |
[21] | R.S. Womersley, ”Optimality conditions for piecewise smooth functions,”Mathematical Programming Study 17 (1982) 13–27. ·Zbl 0478.90059 |
[22] | R.S. Womersley, ”Minimizing nonsmooth composite functions,” Centre for Mathematical Analysis Report CMA-R12-84, Australian National University (1984). ·Zbl 0571.90084 |
[23] | R.S. Womersley, ”Local properties of algorithms for minimizing nonsmooth composite functions,”Mathematical Programming 32 (1985) 69–89. ·Zbl 0571.90084 ·doi:10.1007/BF01585659 |
[24] | Y. Yuan, ”An example of only linear convergence of trust region algorithms for nonsmooth optimization,”IMA Journal of Numerical Analysis 4 (1984) 327–335. ·Zbl 0555.65037 ·doi:10.1093/imanum/4.3.327 |