Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A constructive characterization of \(Q_ 0\)-matrices with nonnegative principal minors.(English)Zbl 0618.90091

In a previous paper [ibid. 16, 374-377 (1979;Zbl 0416.90074)] we characterized the class of matrices with nonnegative principal minors for which the linear complementarity problem always has a solution. That class is contained in the one we study here. Our main result gives a finitely testable set of necessary and sufficient conditions under which a matrix with nonnegative principal minors has the property that if a corresponding linear complementarity problem is feasible then it is solvable. In short, we constructively characterize the matrix class known as \(Q_ 0\cap P_ 0\).

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)

Citations:

Zbl 0416.90074

Cite

References:

[1]M. Aganagić and R.W. Cottle, ”OnQ-matrices”, Technical Report SOL 78-9, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, CA, 1978).
[2]M. Aganagić and R.W. Cottle, ”A note onQ-matrices”,Mathematical Programming 16 (1979) 374–377. ·Zbl 0416.90074 ·doi:10.1007/BF01582122
[3]F.A. Al-Khayyal, ”Necessary and sufficient conditions for the existence of complementary solutions and characterizations of the matrix classesQ andQ o ”, Technical Report PDRC 85-05, Production and Distribution Center, Georgia Institute of Technology (Atlanta, November 1985).
[4]R.W. Cottle, ”The principal pivoting method of quadratic programming”, in: G.B. Dantzig and A.F. Veinott, Jr., eds.,Mathematics of the Decision Sciences, Part I, (American Mathematical Society, Providence, RI, 1968) pp. 144–168. ·Zbl 0196.22902
[5]R.W. Cottle, ”Some recent developments in linear complementarity theory”, in: R.W. Cottle, F. Giannessi, and J.L. Lions, eds.,Variational Inequalities and Complementarity Problems (John Wiley & Sons, Chichester, 1980) pp. 97–104. ·Zbl 0484.90088
[6]R.D. Doverspike and C.E. Lemke, ”A partial characterization of a class of matrices defined by solutions to the linear complementarity problem”,Mathematics of Operations Research 7 (1982) 272–294. ·Zbl 0498.90077 ·doi:10.1287/moor.7.2.272
[7]B.C. Eaves, ”The linear complementarity problem”,Management Science 17 (1971) 612–634. ·Zbl 0228.15004 ·doi:10.1287/mnsc.17.9.612
[8]M. Fiedler and V. Pták, ”Some generalizations of positive definiteness and monotonicity”,Numerische Mathematik 9 (1966) 163–172. ·Zbl 0148.25801 ·doi:10.1007/BF02166034
[9]J.T. Fredericksen, L.T. Watson, and K.G. Murty, ”A finite characterization ofK-matrices in dimensions less than four”,Mathematical Programming 35 (1986) 17–31. ·Zbl 0641.90082 ·doi:10.1007/BF01589438
[10]C.B. Garcia, ”Some classes of matrices in linear complementarity theory”,Mathematical Programming 5 (1973), 299–310. ·Zbl 0284.90048 ·doi:10.1007/BF01580135
[11]A.W. Ingelton, ”A problem in linear inequalities”,Proceedings of the London Mathematical Society 16 (1966) 519–536. ·Zbl 0166.03005 ·doi:10.1112/plms/s3-16.1.519
[12]S. Karamardian, ”The complementarity problem”,Mathematical Programming 2 (1972) 107–129. ·Zbl 0247.90058 ·doi:10.1007/BF01584538
[13]C.E. Lemke, ”Some pivot schemes for the linear complementarity problem”,Mathematical Programming Study 7 (1978) 15–35. ·Zbl 0381.90073
[14]J.S. Pang, ”A note on an open problem in linear complementarity”,Mathematical Programming 13 (1977) 360–363. ·Zbl 0367.90080 ·doi:10.1007/BF01584349
[15]F.J. Pereira R., ”On characterizations of copositive matrices”, Ph.D. Thesis and Technical Report No. 72-8, Department of Operations Research, Stanford University (Stanford, CA, May 1972).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp