90C25 | Convex programming |
90C05 | Linear programming |
65K05 | Numerical mathematical programming methods |
[1] | N.N. Abdelmalek, ”An efficient method for the discrete linearL 1 approximation problem,”Mathematics of Computation 29 (1975) 844–850. ·Zbl 0307.65052 |
[2] | J. Barrodale and F.D.K. Roberts, ”An improved algorithm for discretel 1 linear approximation,”SIAM Journal on Numerical Analysis 10 (1973) 839–848. ·Zbl 0266.65016 ·doi:10.1137/0710069 |
[3] | R.H. Bartels, A.R. Conn and J.W. Sinclair, ”Minimization techniques for piecewise differentiable functions: thel 1 solution to an overdetermined linear system”,SIAM Journal on Numerical Analysis 15 (1978) 224–241. ·Zbl 0376.65018 ·doi:10.1137/0715015 |
[4] | A. Bobbio and A. Premoli, ”A nonlinear integer algorithm for optimal reliability allocation,”Proceedings of the 1980 IEEE International Conference on Circuits and Computers (Port Chester, NY, October 1–3, 1980) pp. 1142–1145. |
[5] | A. Charnes and W.W. Cooper,Management Models and Industrial Applications of Linear Programming, (John Wiley & Sons, New York, 1961). ·Zbl 0107.37004 |
[6] | A.R. Conn. ”Linear programming via a nondifferentiable penalty function,”SIAM Journal on Numerical Analysis 13 (1976) 145–154. ·Zbl 0333.90029 ·doi:10.1137/0713016 |
[7] | G.B. DantzigLinear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963). |
[8] | M. Davies, ”Linear approximation usign the criterion of least total deviations”,Journal of the Royal Statistical Society (Series B) 29 (1967) 101–109. |
[9] | R. Fourer, ”Notes on semi-linear programming,” Draft report, Department of Industrial Engineering and Management Science, Northwestern University (Evanston, IL, 1981). ·Zbl 0538.90051 |
[10] | R. Fourer, ”Piecewise-linear programming,” Draft report, Department of Industrial Engineering and Management Science, Northwestern University (Evanston, IL, 1983). ·Zbl 0506.90054 |
[11] | R. Fourer, ”A simplex algorithm for piecewise-linear programming, I: Derivation and proof,”Mathematical Programming 33 (1985) 204–233. ·Zbl 0579.90084 ·doi:10.1007/BF01582246 |
[12] | R. Fourer, ”A simplex algorithm for piecewise-linear programming, II: Finiteness, feasibility, and degeneracy,” Technical Report 85-03, Department of Industrial Engineering and Management Sciences, Northwestern University, (Evanston, IL, 1985). ·Zbl 0579.90084 |
[13] | E.G. Goldstein, ”A certain class of nonlinear extremum problems,”Doklady Akademii nauk SSSR 133; translated inSoviet Mathematics, 1 (1960) 863–866. ·Zbl 0171.18103 |
[14] | J.K. Ho, ”Relationships among linear formulation of separatble convex piecewise linear programs,”Mathematical Programming Studies 24 (1985) 121–140. ·Zbl 0581.90070 |
[15] | B.A. Murtagh,Advanced Linear Programming (McGraw-Hill, New York, 1981). ·Zbl 0525.90062 |
[16] | A. Orden and V. Nalbandian, ”A bidirectional simplex algorithm,”Journal of the Association for Computing Machinery 15 (1968) 221–235. |
[17] | R.T. Rockafellar, ”Monotropic programming: descent algorithms and duality,” in O.L. Mangasarian, R.R. Meyer and S.M. Robinson eds.,Nonlinear Programming 4 (Academic Press, New York, 1981) pp. 327–366. ·Zbl 0537.49016 |
[18] | R.T. Rockafellar,Network Flows and Monotropic Optimization (Wiley-Interscience, New York, 1984). ·Zbl 0596.90055 |
[19] | H.M. Salkin,Integer Programming (Addison-Wesley, Reading, MA, 1975). |
[20] | R.D. Snyder, ”Programming with piecewise linear objective functions,” Working Paper 9/81, Department of Econometrics and Operations Research, Monash University (Clayton, Victoria, Australia, 1981). |
[21] | R.D. Snyder, ”Linear programming with special ordered sets,”Journal of the Operational Research Society 35 (1984) 69–74. ·Zbl 0526.90071 |
[22] | K. Spyropoulos, E. Kiountouzis, and A. Young, ”Discrete approximation in theL I norm,”The Computer Journal 16 (1973) 180–186. ·Zbl 0257.65015 ·doi:10.1093/comjnl/16.2.180 |
[23] | H.M. Wagner,Principles of Operations Research (Prentice-Hall, Englewood Cliffs, NJ, 1969). ·Zbl 0193.18402 |
[24] | P. Wolfe, ”The composite simplex algorithm,”SIAM Review 7 (1965) 42–54. ·Zbl 0133.42703 ·doi:10.1137/1007004 |
[25] | S. Zionts,Linear and Integer Programming (Prentice-Hall, Englewood Cliffs, NJ, 1974). |