Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras.(English)Zbl 0617.17002

The authors provide here the definitive account of the generalization to the general linear Lie superalgebra \(\mathfrak{pl}(V)=\mathfrak{pl}(k,\ell)\) of Schur’s classical work on the irreducible representations of the general Lie algebra \(\mathfrak{gl}(V)=\mathfrak{gl}(k)\). In particular, Schur’s proof that the permutation action of \(S_ n\) and the diagonal action of \(\mathfrak{gl}(V)\) on \(\text{End}(V^{\otimes n})\) centralise one another is extended to the case of \(V=T\oplus U\), with \(\dim T=k\) and \(\dim U=\ell\). The action of \(S_ n\) restricted to \(T^{\otimes n}\) is as before but involves a sign factor on restriction to \(U^{\otimes n}\). This action centralises that of \(\mathfrak{pl}(V)\) and vice versa on \(\mathrm{End}(V^{\otimes n})\). It is proved that the corresponding irreducible representations may be specified by a set \(\Gamma(k,\ell;n)\) of partitions \(\lambda =(\lambda_ 1,\lambda_ 2,\dots)\) of \(n\) for which \(\lambda_ j\leq \ell\) for \(j\geq k+1\) so that the corresponding Young diagrams lie inside a hook shaped region of arm-height \(k\) and leg-width \(\ell.\)
The proof of this key result involves a generalization of the Robinson-Schensted-Knuth construction and certain new semistandard tableaux in two sets of variables. The characters of irreducible representations of \(\mathfrak{pl}(V)\) are given explicitly, along with branching rules, dimension formulae and a factorization theorem appropriate to the case \(\lambda_ k\geq \ell\).
The work is self-contained but overlaps to some extent independent developments published elsewhere. [P. H. Dondi andP. D. Jarvis, J. Phys. A 14, 547–563 (1981;Zbl 0449.17002),A. B. Balantekin andI. Bars, J. Math. Phys. 22, 1149–1162 (1981;Zbl 0469.22017); 22, 1810–1818 (1981;Zbl 0547.22014), the reviewer, Lect. Notes Phys. 180, 41–47 (1983;Zbl 0529.17005), and Ars. Comb. 16A, 269–287 (1983;Zbl 0547.22016)].

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
05E10 Combinatorial aspects of representation theory

Cite

References:

[1]S. A. Amitsur and A. Regev;S. A. Amitsur and A. Regev
[2]Boerner, H., Representations of Groups (1963), North-Holland: North-Holland Amsterdam ·Zbl 0112.26301
[3]Dixmier, J., Enveloping Algebras (1977), North-Holland: North-Holland Amsterdam ·Zbl 0366.17007
[4]Dondi, P. H.; Jarvis, P. D., Diagram and superfield techniques in the classical superalgebras, J. Phys. A. Math. Gen., 14, 547-563 (1981) ·Zbl 0449.17002
[5]Hall, M., Combinatorial Theory (1967), Blaisdell: Blaisdell Waltham, Mass. ·Zbl 0196.02401
[6]Humphreys, J. E., Introduction to Lie Algebras (1972), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0254.17004
[7]G. D. James;G. D. James ·Zbl 0648.20018
[8]Kac, V. G., Lie superalgebras, Advan. in Math., 26, 8-96 (1977) ·Zbl 0366.17012
[9]Kac, V. G., Characters of typical representations of classical Lie superalgebras, Comm. Algebra, 5, 8, 889-897 (1977) ·Zbl 0359.17010
[10]Kac, V. G., Representations of classical Lie superalgebras, (Differential Geometrical Methodes in Mathematical Physics II. Differential Geometrical Methodes in Mathematical Physics II, Lecture Notes in Math., No. 676 (1978), Springer-Verlag: Springer-Verlag Berlin), 597-626 ·Zbl 0388.17002
[11]Knuth, D. E., (The Art of Computer Programming, Vol. 3 (1968), Addison-Wesley: Addison-Wesley Reading, Mass.) ·Zbl 0191.17903
[12]Krakowski, D.; Regev, A., The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc., 181, 429-438 (1973) ·Zbl 0289.16015
[13]Macdonald, I. G., Symmetric Functions and Hall Polynomials (1979), Oxford Univ. Press (Clarendon): Oxford Univ. Press (Clarendon) England ·Zbl 0487.20007
[14]Regev, A., Asymptotic values for degrees associated with strips of Young diagrams, Advan. in Math., 41, 115-136 (1981) ·Zbl 0509.20009
[15]Regev, A., The Kronecker product of\(S_n\)-characters and an \(A ⊗ \(B\) theorem for Capelli identities, J. Algebra, 66, 505-510 (1980) ·Zbl 0445.16012
[16]Regev, A., On the height of the Kronecker product of \(S_n\) characters, Israel J. Math., 42, 1-2, 60-64 (1982) ·Zbl 0507.20011
[17]M. Scheunertin;M. Scheunertin ·Zbl 0407.17001
[18]Schur, I., Uber die rationalen Darstellungen der allgemeinen linearen Gruppe (1927), (I. Schur, Gesammelte Abhandlungen III (1973), Springer-Verlag: Springer-Verlag Berlin), 68-85 ·JFM 53.0108.05
[19]H. Weyl;H. Weyl ·Zbl 0020.20601
[20]Balantekin, A.; Bars, I., J. Math. Phys., 23, 7, 1239-1247 (1982) ·Zbl 0488.22040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp