Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A new simplicial variable dimension algorithm to find equilibria on the product space of unit simplices.(English)Zbl 0616.90084

A new simplicial variable dimension restart algorithm is introduced to solve the nonlinear complementarity problem on the product space S of unit simplices. The triangulation which underlies the algorithm differs from the triangulations of S used thus far. Moreover, the number of rays along which the algorithm can leave the arbitrary chosen starting point is much larger. More precisely, there is a ray leading from the starting point to each vertex of S. In case S is the product of n one-dimensional simplices the algorithm is similar to the octahedral algorithm on \(R^ n\) having \(2^ n\) rays. Also, the accuracy of an approximate solution in the terminal simplex of the algorithm is in general better than for the other algorithms on S. Computational results will show that the number of iterations for the new algorithm is much less. The examples concern the computation of equilibria in noncooperative games, exchange economies and trade models.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)

Cite

References:

[1]G. van der Laan, ”The computation of general equilibrium in economies with a block diagonal pattern”,Econometrica 53 (1985) 659–666. ·Zbl 0569.90007 ·doi:10.2307/1911660
[2]G. van der Laan and A.J.J. Talman, ”A restart algorithm for computing fixed points without an extra dimension,”Mathematical Programming 17 (1979) 74–84. ·Zbl 0411.90061 ·doi:10.1007/BF01588226
[3]G. van der Laan and A.J.J. Talman, ”An improvement of fixed point algorithms by using a good triangulation,”Mathematical Programming 18 (1980) 274–285. ·Zbl 0433.90089 ·doi:10.1007/BF01588323
[4]G. van der Laan and A.J.J. Talman, ”A class of simplicial restart fixed point algorithms without an extra dimension,”Mathematical Programming 20 (1981) 33–48. ·Zbl 0441.90112 ·doi:10.1007/BF01589331
[5]G. van der Laan and A.J.J. Talman, ”On the computation of fixed points in the product space of unit simplices and an application to noncooperativeN-person games,”Mathematics of Operations Research 7 (1982) 1–13. ·Zbl 0497.90063 ·doi:10.1287/moor.7.1.1
[6]G. van der Laan and A.J.J. Talman, ”Simplicial approximation of solutions to the nonlinear complementarity problem with lower and upper bounds,” Research Memorandum 137, Department of Economics, Tilburg University, Tilburg, The Netherlands (December 1983), to appear inMathematical Programming. ·Zbl 0633.90082
[7]G. van der Laan, A.J.J. Talman and L. Van der Heyden, ”Variable dimensions algorithms for unproper labellings,” Research Memorandum 147, Department of Economics, Tilburg University, Tilburg, The Netherlands (April 1984), to appear inMathematics of Operations Research. ·Zbl 0638.90096
[8]A. Mansur and J. Whalley, ”A decomposition algorithm for general equilibrium computation with application to international trade models,”Econometrica 50 (1982) 1547–1557. ·Zbl 0493.90014 ·doi:10.2307/1913395
[9]H. Scarf, ”The approximation of fixed points of a continuous mapping,”SIAM Journal of Applied Mathematics 15 (1967) 1328–1343. ·Zbl 0153.49401 ·doi:10.1137/0115116
[10]A.J.J. Talman, ”Variable dimension fixed point algorithms and triangulations,” Mathematical Centre Tracts 128, Mathematisch Centrum, Amsterdam, The Netherlands, 1980. ·Zbl 0464.90047
[11]M.J. Todd, ”Improving the convergence of fixed point algorithms,” Mathematical Programming Studies 7 (1978) 151–169. ·Zbl 0399.65034
[12]H. Tuy, Ng. van Thoai and Le d. Muu, ”A modification of Scarf’s algorithm allowing restarting,”Mathematische Operationsforschung und Statistik Series Optimization 9 (1978) 357–372. ·Zbl 0395.90083
[13]A.H. Wright, ”The octahedral algorithm, a new simplicial fixed point algorithm,”Mathematical Programming 21 (1981) 47–69. ·Zbl 0475.65029 ·doi:10.1007/BF01584229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp