Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Uniqueness and differentiability of solutions of parametric nonlinear complementarity problems.(English)Zbl 0613.90096

We derive conditions for the local uniqueness of solutions of nonlinear complementarity problems (NCP). We then prove the existence, continuity, and directional differentiability of a locally unique parametric solution of the parametric NCP under stronger assumptions. In the absence of degeneracy this parametric solution is also shown to be continuously differentiable.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C30 Nonlinear programming

Cite

References:

[1]R.W. Cottle, ”Nonlinear programs with positively bounded Jacobians,”SIAM Journal on Applied Mathematics 14 (1966) 147–158. ·Zbl 0158.18903 ·doi:10.1137/0114012
[2]A.V. Fiacco and G.P. McCormick,Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley, New York, 1968). ·Zbl 0193.18805
[3]C.L. Irwin and C.W. Yang, ”Iteration and sensitivity for a spatial equilibrium problem with linear supply and demand functions,”Operations Research 30(1982) 319–335. ·Zbl 0481.90010 ·doi:10.1287/opre.30.2.319
[4]K. Jittorntrum, ”Mathematical Programming Study 21 (1984) 127–138. ·Zbl 0571.90080
[5]S. Karamardian, ”The nonlinear complementarity problem with applications I and II,”Journal of Optimization Theory and Applications 4(1969) 87–98 and 167–181. ·Zbl 0169.06901 ·doi:10.1007/BF00927414
[6]M. Kojima, ”Studies on piecewise-linear approximations of piecewise-C 1 mappings in fixed points and complementarity theory,”Mathematics of Operations Research 3(1978) 17–36. ·Zbl 0396.41012 ·doi:10.1287/moor.3.1.17
[7]J. Kyparisis, ”Sensitivity analysis framework for variational inequalities,” Florida International University, Miami, preprint (1985). ·Zbl 0573.90089
[8]O.L. Mangasarian, ”Locally unique solutions of quadratic programs, linear and nonlinear complementarity problems,”Mathematical Programming 19(1980) 200–212. ·Zbl 0442.90089 ·doi:10.1007/BF01581641
[9]N. Megiddo, ”On the parametric nonlinear complementarity problem,”Mathematical Programming Study 7(1978) 142–150. ·Zbl 0379.90094
[10]N. Megiddo and M. Kojima, ”On the existence and uniqueness of solutions in nonlinear complementarity theory,”Mathematical Programming 12(1977) 110–130. ·Zbl 0363.90102 ·doi:10.1007/BF01593774
[11]J.J. Moré, ”Classes of functions and feasibility conditions in nonlinear complementarity problems,”Mathematical Programming 6(1974) 327–338. ·Zbl 0291.90059 ·doi:10.1007/BF01580248
[12]K.G. Murty, ”On the number of solutions to the complementarity problem and spanning properties of complementary cones,”Linear Algebra and Its Applications 5(1972) 65–108. ·Zbl 0241.90046 ·doi:10.1016/0024-3795(72)90019-5
[13]S.M. Robinson, ”Generalized equations and their solutions, Part I: Basic theory,”Mathematical Programming Study 10(1979) 128–141. ·Zbl 0404.90093
[14]S.M. Robinson, ”Strongly regular generalized equations,”Mathematics of Operations Research 5(1980) 43–62. ·Zbl 0437.90094 ·doi:10.1287/moor.5.1.43
[15]H. Samelson, R.M. Thrall and O. Wesler, ”A partition theorem for euclideann-space,”Proceedings of the American Mathematical Society 9(1958) 805–807. ·Zbl 0117.37901
[16]R.L. Tobin, ”General spatial price in equilibria: Sensitivity analysis for variational inequality and nonlinear complementarity formulations,” in: P.T. Harker, ed.,Spatial price equilibrium: Advances in theory, computation and application (Springer-Verlag, Berlin, 1985) pp. 158–195.
[17]R.L. Tobin, ”Sensitivity analysis for variational inequalities,”Journal of Optimization Theory and Applications 48(1986) 191–204. ·Zbl 0557.49004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp