Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Algebraic cycles and higher K-theory.(English)Zbl 0608.14004

The main purpose of this paper is to lay the foundations of a theory of higher Chow groups, \(CH^*(X,n)\), \(n\geq 0\), where X is a quasi- projective scheme over a field k, in such a way as to generalize the Riemann-Roch theorem of Baum, Fulton and MacPherson and establish results which have been available for some time in higher algebraic K-theory. These Chow groups are defined as the homotopy groups of a simplicial complex of graded abelian groups associated to X, and this complex is conjectured to satisfy certain axioms of Beilinson and Lichtenbaum.
Among the properties established herein for \(CH^*(X,n)\) are: \((1)\quad functoriality\) (covariant for proper maps, contravariant for flat maps); \((2)\quad \hom otopy\); \((3)\quad localization\); \((4)\quad local\) to global spectral sequence; \((5)\quad multiplicative\) structure; and \((6)\quad Chern\) classes.
Reviewer: M.Stein

MSC:

14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
14C40 Riemann-Roch theorems
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
14C05 Parametrization (Chow and Hilbert schemes)
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)

Cite

References:

[1]Baum, P.; Fulton, W.; MacPherson, R., Riemann-Roch for singular varieties, Publ. Math. I.H.E.S., 45, 101-145 (1975) ·Zbl 0332.14003
[2]Beilinson, A., Higher regulators and values of \(L\)-functions, Modern Problems in Mathematics. Modern Problems in Mathematics, VINIT series, Vol. 24, 181-238 (1984), [Russian]
[3]Beilinson, A., Height pairing between algebraic cycles (1984), preprint ·Zbl 0624.14005
[4]Beilinson, A., Letter to C. Soulé (November 1, 1982)
[5]Bloch, S., Lectures on algebraic cycles, Duke University, Math. Series, No. IV (1980) ·Zbl 0436.14003
[6]Bloch, S., Algebraic \(K\)-theory and Zeta functions of elliptic curves, (Proc. ICM. Proc. ICM, Helsinki (1978)), 511-515 ·Zbl 0454.14011
[7]Chevalley, C., Anneaux de Chow et applications, (“Sem. C. Chevalley,” \(2^è\) année (1958)), Secr. Math. Paris ·Zbl 0098.13101
[8]Fulton, W., Intersection Theory, (Ergebnisse Series (1984), Springer-Verlag: Springer-Verlag Berlin) ·Zbl 0541.14005
[9]O. Gabber;O. Gabber
[10]Gersten, S., Some exact sequences in the higher \(K\)-theory of rings, (Algebraic \(K\)-Theory I. Algebraic \(K\)-Theory I, Springer Lecture Notes, No. 341 (1973), Springer-Verlag: Springer-Verlag Berlin) ·Zbl 0289.18011
[11]Gillet, H., Riemann Roch theorems for higher \(K\)-theory, Advan. in. Math., 40, 203-289 (1981) ·Zbl 0478.14010
[12]Grothendieck, SGA IV, (Springer Lecture Notes, No. 225 (1971), Springer-Verlag: Springer-Verlag Berlin) ·Zbl 0197.47202
[13]Kratzer, C., λ-structure en \(K\)-théorie algébrique, Comment. Math. Helv., 55, 233-254 (1970) ·Zbl 0444.18008
[14]Landsburg, S., Relative cycles and algebraic \(K\)-theory (1983), preprint
[15]Levine, M., Cycles on singular varieties (1983), preprint
[16]Lichtenbaum, S., Values of Zeta functions at non-negative integers (1983), preprint ·Zbl 0591.14014
[17]Quillen, D., Higher Algebraic K-Theory I, (Lecture Notes in Math., No. 341 (1973), Springer-Verlag: Springer-Verlag Berlin), 85-147 ·Zbl 0292.18004
[18]Roberts, J., Chow’s moving lemma, Appendix to exposé of S. Kleiman, (“Algebraic Geometry,” Oslo, 1970 (1972), Wolters-Noordhoff: Wolters-Noordhoff Groningen)
[19]\( \textsc{C. Soulé}K\)J. Canadian Math.; \( \textsc{C. Soulé}K\)J. Canadian Math. ·Zbl 0575.14015
[20]Soulé, C., \(K\)-théorie et zéros aux points entiers de fonctions zêta, (Proc. ICM. Proc. ICM, Warszawa (1983)) ·Zbl 0574.14010
[21]A. A. Suslin\(K\);A. A. Suslin\(K\) ·Zbl 0514.18008
[22]A. A. Suslin\(K\);A. A. Suslin\(K\) ·Zbl 0548.12009
[23]Dayton, B.; Weibel, C., A Spectral Sequence for the \(K\)-Theory of Affine Glued Schemes, (Springer Lecture Notes in Math., No. 854 (1980), Springer-Verlag: Springer-Verlag Berlin), 24-92 ·Zbl 0462.18006
[24]H. Gillet and Thomason\(K\);H. Gillet and Thomason\(K\) ·Zbl 0577.13009
[25]Kleiman, S., The transversality of a general translate, Compositio Math., 38, 287-297 (1974) ·Zbl 0288.14014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp