Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Sets of efficient points in a normed space.(English)Zbl 0605.49020

The paper deals with efficient solutions of a multiobjective programming problem in a normed space; the objective functions to be minimized are distances to every point of a compact subset.
We give a geometrical description of the sets of strictly efficient, efficient and weakly efficient points which looks like a description of the convex hull. It makes use of a family of cones, which play the role of halfspaces in the Euclidean case. Topological properties of these cones are developed. The above description leads to hull and closure properties of sets of efficiency.
In addition the two-dimensional case is emphasized in connection with location theory where more precise results are obtained. In particular, when the space is strictly convex or polyhedral, the description of the sets of efficiency provides a geometrical construction of these sets.

MSC:

49K27 Optimality conditions for problems in abstract spaces
52A07 Convex sets in topological vector spaces (aspects of convex geometry)
90C31 Sensitivity, stability, parametric optimization
46B99 Normed linear spaces and Banach spaces; Banach lattices

Cite

References:

[1]Beauzamy, B.; Maurey, B., Points minimaux et ensembles optimaux dans les espaces de Banach, J. Funct. Anal., 24, 107-139 (1977) ·Zbl 0344.46049
[2]Brown, A. L., Best \(n\)-dimensional approximation to sets of functions, (Proc. London Math. Soc. (3), 14 (1964)), 577-594 ·Zbl 0129.04702
[3]Durier, R., On Efficient Points and Fermat-Weber Problem, (Working paper (1984), University of Dijon: University of Dijon France)
[4]Durier, R.; Michelot, C., Geometrical properties of the Fermat-Weber problem, European J. Oper. Res., 20, 332-343 (1985) ·Zbl 0564.90013
[5]Fejer, L., Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen, Math. Ann., 85, 41-48 (1922) ·JFM 48.1136.03
[6]Kuhn, H. W., On a pair of dual non linear programs, (Abadie, J., Nonlinear Programming (1967), Wiley: Wiley New York) ·Zbl 0183.22804
[7]Love, R. F.; Morris, J. G., A computation procedure for the exact solution of location-allocation problems with rectangular distances, Naval Res. Logist. Quart., 23, 441-453 (1975) ·Zbl 0338.90057
[8]Lowe, T. J.; Thisse, J. F.; Ward, J. E.; Wendell, R. E., On efficient solutions to multiple objective mathematical programs, Management Sci., 30, 1346-1349 (1984) ·Zbl 0553.90095
[9]Papini, P. L., Minimal and closest points nonexpansive and quasi-nonexpansive retractions in real Banach spaces, (Gruber, P. M.; Wills, J. M., Convexity and its Applications (1983), Birkhaüser: Birkhaüser Basel) ·Zbl 0523.46012
[10]Phelps, R. R., Convex sets and nearest points, (Proc. Amer. Math. Soc., 9 (1958)), 867-873 ·Zbl 0109.14901
[11]Plastria, F., Continuous Location Problems and Cutting Plane Algorithms, (Thesis (1983), Vrije Universiteit Brussel) ·Zbl 0621.90079
[12]Ward, J. E.; Wendell, R. E., Characterizing efficient points in location problems under the one-infinity norm, (Thisse, J. F.; Zoller, H. G., Locational Analysis of Public Facilities (1983), North-Holland: North-Holland New York) ·Zbl 0443.90029
[13]Wendell, R. E.; Hurter, A. P., Location theory, dominance and convexity, Oper. Res., 21, 314-321 (1973) ·Zbl 0265.90040
[14]Wendell, R. E.; Hurter, A. P.; Lowe, T. J., Efficient points in location problems, AIIE Trans., 9, 238-246 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp