Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A generalized linear production model: A unifying model.(English)Zbl 0604.90142

The paper deals with linear production games in the tradition of G. Owens. However, the author does not assume that the resources of a coalition S of producers is necessarily obtained by adding up the resources of its members (additivity assumption). It is shown that these generalized production games are balanced if the associated resource games are balanced. Moreoer, a procedure for generating a vector in the core of the generalized production game is given. These two results are easily obtained and then applied to explain the non-emptiness of the core of various cooperative games, which are derived from optimization problems but do not satisfy Owen’s additivity assumption.
Reviewer: D.Hinrichsen

MSC:

91A12 Cooperative games
91B38 Production theory, theory of the firm
90C90 Applications of mathematical programming
90C05 Linear programming
90C35 Programming involving graphs or networks
05C05 Trees

Cite

References:

[1]L.J. Billera and R.E. Bixby, ”Market representation ofn-person games”,Bulletin of the American Mathematical Society 80 (1974) 522–526. ·Zbl 0288.90092 ·doi:10.1090/S0002-9904-1974-13478-6
[2]C. Bird, ”On cost allocation for a spanning tree: A game theoretic approach”,Networks 6 (1976) 335–350. ·Zbl 0357.90083 ·doi:10.1002/net.3230060404
[3]O.N. Bondareva, ”Some applications of linear programming methods to the theory of cooperative games”, (in Russian)Problemy Kibernetiki 10 (1963) 119–139. ·Zbl 1013.91501
[4]A. Charnes and K.O. Kortanek, ”On balanced sets, cores and linear programming”,Cahiers du Centre d’Etudes de Recherches Opérationnelles 9 (1967) 32–43. ·Zbl 0158.19205
[5]P. Dubey and L.S. Shapley, ”Totally balanced games arising from controlled programming problems”,Mathematical Programming 29 (1984) 245–267. ·Zbl 0557.90109 ·doi:10.1007/BF02591996
[6]J. Edmonds, ”Maximum matching and a polyhedron with 0,1 vertices”,National Bureau of Standards Journal of Research 69B (1965) 125–130. ·Zbl 0141.21802
[7]J. Edmonds, ”Optimum branchings”,National Bureau of Standards Journal of Research 71B (1967) 233–240. ·Zbl 0155.51204
[8]D. Gale and L.S. Shapley, ”College admissions and the stability of marriage”,American Mathematical Monthly 69 (1962) 9–14. ·Zbl 0109.24403 ·doi:10.2307/2312726
[9]R.E. Gomory and T.C. Hu, ”An application of generalized linear programming to network flows”,Journal of the Society for Industrial and Applied Mathematics 10 (1962) 260–283. ·Zbl 0105.12805 ·doi:10.1137/0110020
[10]D. Granot, ”A note on the room-mates problem and a related revenue allocation problem”,Management Science 30 (1984) 633–643. ·Zbl 0551.90106 ·doi:10.1287/mnsc.30.5.633
[11]D. Granot and G. Huberman, ”Minimum cost spanning tree games”,Mathematical Programming 21 (1981) 1–18. ·Zbl 0461.90099 ·doi:10.1007/BF01584227
[12]D. Granot and G. Huberman, ”On the core and nucleolus of minimum cost spanning tree games”,Mathematical Programming 29 (1984) 323–347. ·Zbl 0541.90099 ·doi:10.1007/BF02592000
[13]D. Granot and F. Granot, ”On some network flow games”, Working Paper No. 1056, Faculty of Commerce and Business Administration, University of British Columbia, Vancouver (1984). ·Zbl 0555.90077
[14]E. Kalai and E. Zemel, ”Generalized network problems yielding totally balanced games”,Operations Research 30 (1982) 998–1008. ·Zbl 0493.90032 ·doi:10.1287/opre.30.5.998
[15]G. Owen, ”On the core of linear production games”,Mathematical Programming 9 (1975) 358–370. ·Zbl 0318.90060 ·doi:10.1007/BF01681356
[16]L.S. Shaplley, ”On balanced sets and cores”,Naval Research Logistics Quarterly 4 (1967) 453–460. ·doi:10.1002/nav.3800140404
[17]L.S. Shapley and M. Shubik, ”The assignment game I: The core”,International Journal of Game Theory 1 (1972) 111–130. ·Zbl 0236.90078 ·doi:10.1007/BF01753437
[18]M.J. Todd, Private Communication, June 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp