Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The power of geometric duality.(English)Zbl 0603.68072

This paper uses a new formulation of the notion of duality that allows the unified treatment of a number of geometric problems. In particular, we are able to apply our approch to solve two long-standing problems of computational geometry; one is to obtain a quadratic algorithm for computing the minimum-area triangle with vertices chosen among n points in the plane; the other is to produce an optimal algorithm for the half- plane range query problem. This problem is to preprocess n points in the plane, so that given a test half-plane, one can efficiently determine all points lying in the half-plane. We describe an optimal \(O(k+\log n)\) time algorithm for answering such queries, where k is the number of points to be reported. The algorithm requires O(n) spaces and O(n log n) preprocessing time. Both of these results represent significant improvements over the best methods previously known. In addition, we give a number of new combinatorial results related to the computation of line arrangements.

MSC:

68R99 Discrete mathematics in relation to computer science
68Q25 Analysis of algorithms and problem complexity

Cite

References:

[1]K. Q. Brown,Geometric transforms for fast geometric algorithms, PhD thesis, Carnegie-Mellon Univ., 1979.
[2]B. Chazelle,Optimal algorithms for computing depths and layers, Brown University, Technical Report, CS-83-13, March 1983.
[3]B. Chazelle,Filtering search: A new approach to query-answering, Proc. 24th Annual FOCS Symp., pp. 122–132, November 1983.
[4]B. Chazelle and D. Dobkin,Detection is easier than computation, Proc. 12th Annual SIGACT Symp., Los Angeles, California, pp. 146–153, May 1980.
[5]H. Edelsbrunner,Private Communication, June 1983.
[6]H. Edelsbrunner, D. G. Kirkpatrick and H. A. Maurer,Polygonal intersection searching, Inf. Proc. Lett., 14, pp. 74–79, 1982. ·Zbl 0486.68051 ·doi:10.1016/0020-0190(82)90090-4
[7]H. Edelsbrunner, J. O’Rourke and R. Seidel,Constructing arrangements of lines and hyperplanes with applications, Proc. 24th Annual FOCS Symp., pp. 83–91, November 1983.
[8]H. Edelsbrunner and E. Welzl,Halfplanar range estimation, Tech. Univ. of Graz, Tech Rep. F98, 1982. ·Zbl 0634.68064
[9]H. Edelsbrunner and E. Welzl,Halfplanar range search in linear space and O(n 0.695 ) query time, Tech. Univ. of Graz, Tech Rep. F111, 1983. ·Zbl 0634.68064
[10]M. R. Garey, D. S. Johnson, F. P. Preparata and R. E. Tarjan,Triangulating a simple polygon, Inf. Proc. Lett. 7(4), pp. 175–179, 1978. ·Zbl 0384.68040 ·doi:10.1016/0020-0190(78)90062-5
[11]L. J. Guibas and J. Stolfi,Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams, Proc. 15th Annual SIGACT Symp., pp. 221–234, April 1983. ·Zbl 0586.68059
[12]L. Guibas, L. Ramshaw and J. Stolfi,A kinetic framework for computational geometry, Proc. 24th Annual FOCS Symp., pp. 100–111, November 1983.
[13]D. G. Kirkpatrick,Optimal search in planar subdivisions, SIAM J. on Comp., Vol. 12, No. 1, pp. 28–35, February 1983. ·Zbl 0501.68034 ·doi:10.1137/0212002
[14]R. J. Lipton and R. E. Tarjan,Applications of a planar separator theorem, SIAM J. Comp., 9(3), pp. 615–627, 1980. ·Zbl 0456.68077 ·doi:10.1137/0209046
[15]D. E. Muller and F. P. Preparata,Finding the intersection of two convex polyhedra, Theoret. Comput. Sci. 7 (1978), pp. 217–236. ·Zbl 0396.52002 ·doi:10.1016/0304-3975(78)90051-8
[16]M. H. Overmars and J. van Leeuwen,Maintenance of configurations in the plane, Journal of Computer and System Sciences, 23, p. 166–204, 1981. ·Zbl 0474.68082 ·doi:10.1016/0022-0000(81)90012-X
[17]D. E. Willard,Polygon retrieval, SIAM J. Comp., 11, pp. 149–165, 1982. ·Zbl 0478.68060 ·doi:10.1137/0211012
[18]F. F. Yao,A 3-space partition and its applications, Proc. 15th Annual SIGACT Symp., pp. 258–263, April 1983.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp