90C30 | Nonlinear programming |
90C06 | Large-scale problems in mathematical programming |
65K05 | Numerical mathematical programming methods |
49M37 | Numerical methods based on nonlinear programming |
[1] | J. Birge and R.J.-B. Wets, ”Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse,” WP-83-111, IIASA, Laxenburg, 1983. ·Zbl 0603.90104 |
[2] | M.J. Best, ”Equivalence of some quadratic programming algorithms,”Mathematical Programming 30 (1984) 71–87. ·Zbl 0551.90074 ·doi:10.1007/BF02591799 |
[3] | J. Bisschop and A. Meeraus, ”Matrix augmentation and partitioning in the updating of the basis inverse,”Mathematical Programming 13 (1977) 241–254. ·Zbl 0372.90083 ·doi:10.1007/BF01584341 |
[4] | J.W. Daniel, W.P. Gragg, L.C. Kaufman and G.W. Stewart, ”Reorthogonalization and stable algorithm for updating the Gram-Schmidt QR factorization,”Mathematics of Computation 30 (1976) 772–795. ·Zbl 0345.65021 |
[5] | G. Dantzig and A. Madansky, ”On the solution of two-stage linear programs under uncertainty,” in:Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. I, University of California Press, Berkeley, 1961, pp. 165–176. ·Zbl 0104.14401 |
[6] | G. Dantzig and R. Van Slyke, ”Generalized upper bounding techniques,”Journal of Computer System Science 1 (1967) 213–226. ·Zbl 0162.23003 ·doi:10.1016/S0022-0000(67)80015-1 |
[7] | P.E. Gill, N.I.M. Gould, W. Murray, M.A. Saunders and M. Wright, ”A weighted Gram-Schmidt method for convex quadratic programming,”Mathematical Programming 30 (1984) 176–195. ·Zbl 0545.90080 ·doi:10.1007/BF02591884 |
[8] | P.E. Gill and W. Murray, ”Numerically stable methods for quadratic programming,”Mathematical Programming 14 (1978) 349–372. ·Zbl 0374.90054 ·doi:10.1007/BF01588976 |
[9] | P. Kall, K. Frauendorfer and A. Ruszczyński, ”Approximation techniques in stochastic programming,” Technical Report, Institut für Operations Research, Universität Zürich, Zürich, 1984. ·Zbl 0665.90067 |
[10] | P. Kall and D. Stoyan, ”Solving stochastic programming problems with recourse including error bounds,”Mathematische Operationsforschung und Statistik, Ser. Optimization 13 (1982) 431–447. ·Zbl 0507.90067 |
[11] | K.C. Kiwiel, ”An aggregate subgradient method for nonsmooth convex minimization,”Mathematical Programming 27 (1983) 320–341. ·Zbl 0525.90074 ·doi:10.1007/BF02591907 |
[12] | K.C. Kiwiel, ”A decomposition method of descent for minimizing a sum of convex nonsmooth functions,” Technical Report, Systems Research Institute, Warsaw, 1984 (to appear inJournal of Optimization Theory and Applications). |
[13] | K.C. Kiwiel, ”A method for solving certain quadratic programming problems arising in nonsmooth optimization,” Technical Report, Systems Research Institute, Warsaw, 1984 (to appear inIMA Journal of Numerical Analysis). |
[14] | L.S. Lasdon,Optimization Theory for Large Systems (Macmillan, New York, 1970). ·Zbl 0224.90038 |
[15] | C. Lemaréchal, J.J. Strodiot and A. Bihain, ”On a bundle algorithm for nonsmooth optimization,” in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear Programming 4 (Academic Press, New York, 1981) pp. 245–282. ·Zbl 0533.49023 |
[16] | R.E. Marsten, W.W. Hogan and J.W. Blankenship, ”The boxstep method for large scale optimization,”Operations Research 23 (1975) 389–405. ·Zbl 0372.90078 ·doi:10.1287/opre.23.3.389 |
[17] | R. Mifflin, ”A stable method for solving certain constrained least squares problems,”Mathematical Programming 16 (1979) 141–158. ·Zbl 0407.90065 ·doi:10.1007/BF01582105 |
[18] | B.A. Murtagh and M.A. Saunders, ”Large-scale linearly constrained optimization,”Mathematical Programming 14 (1978) 41–72. ·Zbl 0383.90074 ·doi:10.1007/BF01588950 |
[19] | R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, 1970). ·Zbl 0193.18401 |
[20] | R.T. Rockafellar, ”Monotone operators and the proximal point algorithm,”SIAM Journal of Control and Optimization 14 (1976) 877–898. ·Zbl 0358.90053 ·doi:10.1137/0314056 |
[21] | J.B. Rosen, ”Primal partition programming for block diagonal matrices,”Numerische Mathematik 6 (1964) 250–260. ·Zbl 0129.34102 ·doi:10.1007/BF01386073 |
[22] | A. Ruszczyński, ”QDECOM: The regularized decomposition method. User manual,” Technical Report, Institut für Operations Research, Universität Zürich, Zürich, 1985. |
[23] | N.Z. Shor,Minimization Methods for Non-Differentiable Functions (Springer-Verlag, Berlin, 1985). ·Zbl 0561.90058 |
[24] | D.M. Topkis, ”A cutting-plane algorithm with linear and geometric rates of convergence,”Journal of Optimization Theory and Applications 36 (1982) 1–22. ·doi:10.1007/BF00934337 |
[25] | R. Van Slyke and R.J.-B. Wets, ”L-shaped linear programs with applications to optimal control and stochastic programming,”SIAM Journal on Applied Mathematics 17 (1969) 638–663. ·Zbl 0197.45602 ·doi:10.1137/0117061 |
[26] | R.J.-B. Wets, ”Stochastic programming: solution techniques and approximation schemes,” in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming: The State of the Art (Springer-Verlag, Berlin, 1983) pp. 507–603. ·Zbl 0551.90070 |
[27] | R.J.-B. Wets, ”Large scale linear programming techniques in stochastic programming,” WP-84-90, IIASA, Laxenburg, 1984. |
[28] | P. Wolfe, ”A method of conjugate subgradients for minimizing nondifferentiable functions,”Mathematical Programming Study 3 (1975) 145–173. ·Zbl 0369.90093 |
[29] | P. Wolfe, ”Finding the nearest point in a polytope,”Mathematical Programming 11 (1976) 128–149. ·Zbl 0352.90046 ·doi:10.1007/BF01580381 |