Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A regularized decomposition method for minimizing a sum of polyhedral functions.(English)Zbl 0599.90103

Motivated by the two-stage stochastic programming problem with recourse for the case of a discrete distribution of the involved random elements, the author proposes an algorithm for the solution of nonlinear programming problems where the objective function to be minimized is the sum of many convex piecewise-linear functions, the constraints are linear and convex piecewise-linear functions, too. The method generates two sequences: main iterates \(\{x^ k\}\) and trial points \(\{y^ k\}\). At each iteration each of the functions are approximated from below by a pointwise maximum of a finite collection of linear functions and an approximate problem is constructed to find the next trial point. The objective of the approximate problem contains a quadratic term to stabilize it and to keep the number of the elements in the finite collection limited.
The approximate problem is solved in each iteration by a special algorithm based on an active set strategy. Convergence analysis is provided together with computational experiences.
Reviewer: B.Strazicky

MSC:

90C30 Nonlinear programming
90C06 Large-scale problems in mathematical programming
65K05 Numerical mathematical programming methods
49M37 Numerical methods based on nonlinear programming

Cite

References:

[1]J. Birge and R.J.-B. Wets, ”Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse,” WP-83-111, IIASA, Laxenburg, 1983. ·Zbl 0603.90104
[2]M.J. Best, ”Equivalence of some quadratic programming algorithms,”Mathematical Programming 30 (1984) 71–87. ·Zbl 0551.90074 ·doi:10.1007/BF02591799
[3]J. Bisschop and A. Meeraus, ”Matrix augmentation and partitioning in the updating of the basis inverse,”Mathematical Programming 13 (1977) 241–254. ·Zbl 0372.90083 ·doi:10.1007/BF01584341
[4]J.W. Daniel, W.P. Gragg, L.C. Kaufman and G.W. Stewart, ”Reorthogonalization and stable algorithm for updating the Gram-Schmidt QR factorization,”Mathematics of Computation 30 (1976) 772–795. ·Zbl 0345.65021
[5]G. Dantzig and A. Madansky, ”On the solution of two-stage linear programs under uncertainty,” in:Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. I, University of California Press, Berkeley, 1961, pp. 165–176. ·Zbl 0104.14401
[6]G. Dantzig and R. Van Slyke, ”Generalized upper bounding techniques,”Journal of Computer System Science 1 (1967) 213–226. ·Zbl 0162.23003 ·doi:10.1016/S0022-0000(67)80015-1
[7]P.E. Gill, N.I.M. Gould, W. Murray, M.A. Saunders and M. Wright, ”A weighted Gram-Schmidt method for convex quadratic programming,”Mathematical Programming 30 (1984) 176–195. ·Zbl 0545.90080 ·doi:10.1007/BF02591884
[8]P.E. Gill and W. Murray, ”Numerically stable methods for quadratic programming,”Mathematical Programming 14 (1978) 349–372. ·Zbl 0374.90054 ·doi:10.1007/BF01588976
[9]P. Kall, K. Frauendorfer and A. Ruszczyński, ”Approximation techniques in stochastic programming,” Technical Report, Institut für Operations Research, Universität Zürich, Zürich, 1984. ·Zbl 0665.90067
[10]P. Kall and D. Stoyan, ”Solving stochastic programming problems with recourse including error bounds,”Mathematische Operationsforschung und Statistik, Ser. Optimization 13 (1982) 431–447. ·Zbl 0507.90067
[11]K.C. Kiwiel, ”An aggregate subgradient method for nonsmooth convex minimization,”Mathematical Programming 27 (1983) 320–341. ·Zbl 0525.90074 ·doi:10.1007/BF02591907
[12]K.C. Kiwiel, ”A decomposition method of descent for minimizing a sum of convex nonsmooth functions,” Technical Report, Systems Research Institute, Warsaw, 1984 (to appear inJournal of Optimization Theory and Applications).
[13]K.C. Kiwiel, ”A method for solving certain quadratic programming problems arising in nonsmooth optimization,” Technical Report, Systems Research Institute, Warsaw, 1984 (to appear inIMA Journal of Numerical Analysis).
[14]L.S. Lasdon,Optimization Theory for Large Systems (Macmillan, New York, 1970). ·Zbl 0224.90038
[15]C. Lemaréchal, J.J. Strodiot and A. Bihain, ”On a bundle algorithm for nonsmooth optimization,” in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear Programming 4 (Academic Press, New York, 1981) pp. 245–282. ·Zbl 0533.49023
[16]R.E. Marsten, W.W. Hogan and J.W. Blankenship, ”The boxstep method for large scale optimization,”Operations Research 23 (1975) 389–405. ·Zbl 0372.90078 ·doi:10.1287/opre.23.3.389
[17]R. Mifflin, ”A stable method for solving certain constrained least squares problems,”Mathematical Programming 16 (1979) 141–158. ·Zbl 0407.90065 ·doi:10.1007/BF01582105
[18]B.A. Murtagh and M.A. Saunders, ”Large-scale linearly constrained optimization,”Mathematical Programming 14 (1978) 41–72. ·Zbl 0383.90074 ·doi:10.1007/BF01588950
[19]R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, 1970). ·Zbl 0193.18401
[20]R.T. Rockafellar, ”Monotone operators and the proximal point algorithm,”SIAM Journal of Control and Optimization 14 (1976) 877–898. ·Zbl 0358.90053 ·doi:10.1137/0314056
[21]J.B. Rosen, ”Primal partition programming for block diagonal matrices,”Numerische Mathematik 6 (1964) 250–260. ·Zbl 0129.34102 ·doi:10.1007/BF01386073
[22]A. Ruszczyński, ”QDECOM: The regularized decomposition method. User manual,” Technical Report, Institut für Operations Research, Universität Zürich, Zürich, 1985.
[23]N.Z. Shor,Minimization Methods for Non-Differentiable Functions (Springer-Verlag, Berlin, 1985). ·Zbl 0561.90058
[24]D.M. Topkis, ”A cutting-plane algorithm with linear and geometric rates of convergence,”Journal of Optimization Theory and Applications 36 (1982) 1–22. ·doi:10.1007/BF00934337
[25]R. Van Slyke and R.J.-B. Wets, ”L-shaped linear programs with applications to optimal control and stochastic programming,”SIAM Journal on Applied Mathematics 17 (1969) 638–663. ·Zbl 0197.45602 ·doi:10.1137/0117061
[26]R.J.-B. Wets, ”Stochastic programming: solution techniques and approximation schemes,” in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming: The State of the Art (Springer-Verlag, Berlin, 1983) pp. 507–603. ·Zbl 0551.90070
[27]R.J.-B. Wets, ”Large scale linear programming techniques in stochastic programming,” WP-84-90, IIASA, Laxenburg, 1984.
[28]P. Wolfe, ”A method of conjugate subgradients for minimizing nondifferentiable functions,”Mathematical Programming Study 3 (1975) 145–173. ·Zbl 0369.90093
[29]P. Wolfe, ”Finding the nearest point in a polytope,”Mathematical Programming 11 (1976) 128–149. ·Zbl 0352.90046 ·doi:10.1007/BF01580381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp