90C20 | Quadratic programming |
49M37 | Numerical methods based on nonlinear programming |
65K05 | Numerical mathematical programming methods |
[1] | M.C. Biggs, ”On the convergence of some constrained minimization algorithms based on recursive quadratic programming”,J. Inst. Math. Appl. 21 (1978) 67–82. ·Zbl 0373.90056 ·doi:10.1093/imamat/21.1.67 |
[2] | M.C. Bartholomew-Biggs, ”A recursive quadratic programming algorithm based on the augmented Lagrangian function”, Technical Report No. 139, Numerical Optimisation Centre, The Hatfield Polytechnic, 1983. ·Zbl 0636.90079 |
[3] | D.P. Bertsekas, ”Augmented Lagrangian and differentiable exact penalty methods”, in: M.J.D. Powell, ed.,Nonlinear optimization 1981 (Academic Press, London, 1982) pp. 223–234. |
[4] | D.P. Bertsekas,Constrained optimization and Lagrange multiplier methods (Academic Press, New York, 1982). ·Zbl 0572.90067 |
[5] | P.T. Boggs, J.W. Tolle and P. Wang, ”On the local convergence of quasi-Newton methods for constrained optimization”,SIAM Journal of Control and Optimization 20 (1982) 161–171. ·Zbl 0494.65036 ·doi:10.1137/0320014 |
[6] | R.M. Chamberlain, C. Lemarechal, H.C. Pedersen and M.J.D. Powell, ”The watchdog technique for forcing convergence in algorithms for constrained optimization”,Mathematical Programming Studies 16 (1982) 1–17. ·Zbl 0477.90072 ·doi:10.1007/BFb0120945 |
[7] | G. Di Pillo, L. Grippo and F. Lampariello, ”A method for solving equality constrained optimization problems by constrained minimization”, in: K. Iracki, K. Malanowski and S. Walukiewicz, eds.,Optimization techniques Part 2, Lecture Notes in Control and Information Sciences 23 (Springer-Verlag, Berlin, 1980) pp. 96–105. ·Zbl 0445.90062 |
[8] | R. Fletcher, ”A class of methods for nonlinear programming with termination and convergence properties”, in: J. Abadie, ed.,Integer and nonlinear programming (North Holland, Amsterdam, 1970). ·Zbl 0332.90039 |
[9] | R. Fletcher, ”An exact penalty function for nonlinear programming with inequalities”,Mathematical Programming 5 (1973) 129–150. ·Zbl 0278.90063 ·doi:10.1007/BF01580117 |
[10] | R. Fletcher, ”Penalty functions”, in: A. Bachem, M. Grotschel and B. Korte, eds.,Mathematical programming, the state of the art (Springer-Verlag, Berlin, 1983) pp. 87–113. ·Zbl 0542.90087 |
[11] | P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, ”User’s guide for SOL/NPSOL:A fortran package for nonlinear programming”, Technical Report SOL 83-12. Department of Operations Research, Stanford University, Stanford. |
[12] | S.P. Han, ”Superlinearly convergent variable metric algorithms for general nonlinear programming problems”,Mathematical Programming 11 (1976) 263–282. ·Zbl 0364.90097 ·doi:10.1007/BF01580395 |
[13] | S.P. Han, ”A globally convergent method for nonlinear programming”,Journal of Optimization Theory and Applications 22 (1977) 297–309. ·Zbl 0336.90046 ·doi:10.1007/BF00932858 |
[14] | M.J.D. Powell, ”A fast algorithm for nonlinearly constrained optimization calculations”, in: G.A. Watson, ed.,Numerical analysis Dundee 1977, Lecture Notes in Mathematics 630 (Springer-Verlag, Berlin, 1978) pp. 144–157. |
[15] | M.J.D. Powell, ”The convergence of variable metric methods for nonlinear constrained optimization calculations”, in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear programming 3 (Academic Press, New York, 1978) pp. 27–63. ·Zbl 0464.65042 |
[16] | M.J.D. Powell, ”Variable metric methods for constrained optimization”, in: A. Bachem, M. Grotschel and B. Korte, eds.,Mathematical programming, the state of the art (Springer-Verlag, Berlin, 1983) pp. 288–311. ·Zbl 0536.90076 |
[17] | M.J.D. Powell, ”The performance of two subroutines for constrained optimization on some difficult test problems”, in: P.T. Boggs, R.H. Boyd and R.B. Schnabel, eds.,Numerical optimization 1984 (SIAM, Philadelphia, 1985) pp. 160–177. |
[18] | K. Schittkowski, ”The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function, Part I: convergence analysis”,Numerische Mathematik 38 (1981) 83–114. ·Zbl 0534.65030 ·doi:10.1007/BF01395810 |
[19] | K. Schittkowski, ”On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function”,Mathematische Operationsforschung und Statistik, Ser. Optimization 14 (1983) 197–216. ·Zbl 0523.90075 |
[20] | R.B. Wilson, A simplicial algorithm for concave programming, Ph.D. Dissertation, Graduate School of Business Administration, Harvard University, Boston, 1963. |