Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A recursive quadratic programming algorithm that uses differentiable exact penalty functions.(English)Zbl 0598.90079

Considered is the equality constrained nonlinear minimization problem: minimize \(f(x)\) subject to \(c(x)=0\), where \(f: \mathbb R^ n\to \mathbb R^ 1\) and \(c: \mathbb R^ n\to R^ m\) are twice continuously differentiable functions. The recursive quadratic programming method presented here for solving the above problem uses approximations to Fletcher’s differentiable exact penalty function [R. Fletcher, ibid. 5, 129–150 (1973;Zbl 0278.90063)] as line search functions. The algorithm has the important feature that approximations to the derivatives of Lagrange multipliers are employed that avoid the need to calculate any second derivatives. Global convergence and local superlinear convergence results are proved. Numerical results are also given.
Reviewer: C.A.Botsaris

MSC:

90C20 Quadratic programming
49M37 Numerical methods based on nonlinear programming
65K05 Numerical mathematical programming methods

Citations:

Zbl 0278.90063

Software:

NPSOL

Cite

References:

[1]M.C. Biggs, ”On the convergence of some constrained minimization algorithms based on recursive quadratic programming”,J. Inst. Math. Appl. 21 (1978) 67–82. ·Zbl 0373.90056 ·doi:10.1093/imamat/21.1.67
[2]M.C. Bartholomew-Biggs, ”A recursive quadratic programming algorithm based on the augmented Lagrangian function”, Technical Report No. 139, Numerical Optimisation Centre, The Hatfield Polytechnic, 1983. ·Zbl 0636.90079
[3]D.P. Bertsekas, ”Augmented Lagrangian and differentiable exact penalty methods”, in: M.J.D. Powell, ed.,Nonlinear optimization 1981 (Academic Press, London, 1982) pp. 223–234.
[4]D.P. Bertsekas,Constrained optimization and Lagrange multiplier methods (Academic Press, New York, 1982). ·Zbl 0572.90067
[5]P.T. Boggs, J.W. Tolle and P. Wang, ”On the local convergence of quasi-Newton methods for constrained optimization”,SIAM Journal of Control and Optimization 20 (1982) 161–171. ·Zbl 0494.65036 ·doi:10.1137/0320014
[6]R.M. Chamberlain, C. Lemarechal, H.C. Pedersen and M.J.D. Powell, ”The watchdog technique for forcing convergence in algorithms for constrained optimization”,Mathematical Programming Studies 16 (1982) 1–17. ·Zbl 0477.90072 ·doi:10.1007/BFb0120945
[7]G. Di Pillo, L. Grippo and F. Lampariello, ”A method for solving equality constrained optimization problems by constrained minimization”, in: K. Iracki, K. Malanowski and S. Walukiewicz, eds.,Optimization techniques Part 2, Lecture Notes in Control and Information Sciences 23 (Springer-Verlag, Berlin, 1980) pp. 96–105. ·Zbl 0445.90062
[8]R. Fletcher, ”A class of methods for nonlinear programming with termination and convergence properties”, in: J. Abadie, ed.,Integer and nonlinear programming (North Holland, Amsterdam, 1970). ·Zbl 0332.90039
[9]R. Fletcher, ”An exact penalty function for nonlinear programming with inequalities”,Mathematical Programming 5 (1973) 129–150. ·Zbl 0278.90063 ·doi:10.1007/BF01580117
[10]R. Fletcher, ”Penalty functions”, in: A. Bachem, M. Grotschel and B. Korte, eds.,Mathematical programming, the state of the art (Springer-Verlag, Berlin, 1983) pp. 87–113. ·Zbl 0542.90087
[11]P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, ”User’s guide for SOL/NPSOL:A fortran package for nonlinear programming”, Technical Report SOL 83-12. Department of Operations Research, Stanford University, Stanford.
[12]S.P. Han, ”Superlinearly convergent variable metric algorithms for general nonlinear programming problems”,Mathematical Programming 11 (1976) 263–282. ·Zbl 0364.90097 ·doi:10.1007/BF01580395
[13]S.P. Han, ”A globally convergent method for nonlinear programming”,Journal of Optimization Theory and Applications 22 (1977) 297–309. ·Zbl 0336.90046 ·doi:10.1007/BF00932858
[14]M.J.D. Powell, ”A fast algorithm for nonlinearly constrained optimization calculations”, in: G.A. Watson, ed.,Numerical analysis Dundee 1977, Lecture Notes in Mathematics 630 (Springer-Verlag, Berlin, 1978) pp. 144–157.
[15]M.J.D. Powell, ”The convergence of variable metric methods for nonlinear constrained optimization calculations”, in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear programming 3 (Academic Press, New York, 1978) pp. 27–63. ·Zbl 0464.65042
[16]M.J.D. Powell, ”Variable metric methods for constrained optimization”, in: A. Bachem, M. Grotschel and B. Korte, eds.,Mathematical programming, the state of the art (Springer-Verlag, Berlin, 1983) pp. 288–311. ·Zbl 0536.90076
[17]M.J.D. Powell, ”The performance of two subroutines for constrained optimization on some difficult test problems”, in: P.T. Boggs, R.H. Boyd and R.B. Schnabel, eds.,Numerical optimization 1984 (SIAM, Philadelphia, 1985) pp. 160–177.
[18]K. Schittkowski, ”The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function, Part I: convergence analysis”,Numerische Mathematik 38 (1981) 83–114. ·Zbl 0534.65030 ·doi:10.1007/BF01395810
[19]K. Schittkowski, ”On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function”,Mathematische Operationsforschung und Statistik, Ser. Optimization 14 (1983) 197–216. ·Zbl 0523.90075
[20]R.B. Wilson, A simplicial algorithm for concave programming, Ph.D. Dissertation, Graduate School of Business Administration, Harvard University, Boston, 1963.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp