Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A simple constraint qualification in infinite dimensional programming.(English)Zbl 0597.90056

For the abstract mathematical programming problem of minimizing a functional f subject to equality constraints and a sign-restriction \(x\in S\) (S a positivity cone) a constant qualification is introduced which, in finite dimensions, is equivalent to Slater’s condition. Further, it is shown that together with some closure conditions for linear functionals f duality theorems can be proved. Some applications are discussed including constrained \(L_ 2\)-approximation.
Reviewer: R.Hettich

MSC:

90C05 Linear programming
90C34 Semi-infinite programming

Cite

References:

[1]A. Ben-Israel, ”Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory”,Journal of Mathematical Analysis and Applications 27 (1969) 367–389. ·Zbl 0174.31502 ·doi:10.1016/0022-247X(69)90054-7
[2]A. Ben-Israel, A. Ben-Tal and S. Zlobec,Optimality in non-linear programming: A feasible directions approach (Wiley, New York, 1981). ·Zbl 0454.90043
[3]J.M. Borwein and H. Wolkowicz, ”Characterizations of optimality for the abstract convex program with finite dimensional range”,Journal of the Australian Mathematical Society 30 (1981) 390–411. ·Zbl 0469.90088 ·doi:10.1017/S1446788700017882
[4]J.M. Borwein and H. Wolkowicz, ”Characterizations of optimality without constraint qualification for the abstract convex program”,Mathematical Programming Study 19 (1982) 77–100. ·Zbl 0495.90085
[5]B.D. Craven and J.J. Koliha, ”Generalizations of Farkas’ theorem”,SIAM Journal on Mathematical Analysis 8 (1977) 938–997. ·Zbl 0408.52006 ·doi:10.1137/0508076
[6]R.B. Holmes,Geometric functional analysis and its applications (Springer-Verlag, Berlin, 1975). ·Zbl 0336.46001
[7]C. Kallina and A.C. Williams, ”Linear programming in reflexive spaces”,SIAM Review 13 (1971) 350–376. ·Zbl 0224.90042 ·doi:10.1137/1013065
[8]C.A. Micchelli, P.W. Smith, J. Swetits, and J.D. Ward, ”ConstrainedL p approximation”,Journal of Constructive Approximation 1 (1985) 93–102. ·Zbl 0582.41002 ·doi:10.1007/BF01890024
[9]H. Wolkowicz, ”Some applications of optimization in matrix theory”,Linear Algebra and Its Applications 40 (1981) 101–118. ·Zbl 0472.90078 ·doi:10.1016/0024-3795(81)90143-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp