Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A method of linearizations for linearly constrained nonconvex nonsmooth minimization.(English)Zbl 0596.90078

Summary: A readily implementable algorithm is given for minimizing a (possibly nondifferentiable and nonconvex) locally Lipschitz continuous function f subject to linear constraints. At each iteration a polyhedral approximation to f is constructed from a few previously computed subgradients and an aggregate subgradient, which accumulates the past subgradient information. This approximation and the linear constraints generate constraints in the search direction finding subproblem that is a quadratic programming problem. Then a stepsize is found by an approximate line search. All the algorithm’s accumulation points are stationary. Moreover, the algorithm converges when f happens to be convex.

MSC:

90C30 Nonlinear programming
49M37 Numerical methods based on nonlinear programming
65K05 Numerical mathematical programming methods
90C25 Convex programming
90C55 Methods of successive quadratic programming type

Cite

References:

[1]A. Bihain, ”Optimization of upper-semidifferentiable functions”,Journal of Optimization Theory and Applications 44 (1984) 545–568. ·Zbl 0534.90069 ·doi:10.1007/BF00938396
[2]F.H. Clarke,Optimization and nonsmooth analysis (Wiley-Interscience, New York, 1983). ·Zbl 0582.49001
[3]G.B. Dantzig,Linear programming and extensions (Princeton University Press, Princeton, New Jersey, 1963).
[4]K.C. Kiwiel, ”An aggregate subgradient method for nonsmooth convex minimization”,Mathematical Programming 27 (1983) 320–341. ·Zbl 0525.90074 ·doi:10.1007/BF02591907
[5]K.C. Kiwiel, ”A linearization algorithm for constrained nonsmooth minimization”, in: P. Thoft-Christensen, ed.,System modelling and optimization, Lecture Notes in Control and Information Sciences 59 (Springer-Verlag, Berlin, 1984) pp. 311–320.
[6]K.C. Kiwiel, ”An algorithm for linearly constrained convex nondifferentiable minimization problems”,Journal of Mathematical Analysis and Applications 105 (1985) 111–119. ·Zbl 0564.90053 ·doi:10.1016/0022-247X(85)90061-7
[7]K.C. Kiwiel,Methods of descent for nondifferentiable optimization, Lecture Notes in Mathematics 1133 (Springer-Verlag, Berlin, 1985). ·Zbl 0561.90059
[8]K.C. Kiwiel, ”A linearization algorithm for nonsmooth minimization”,Mathematics of Operations Research 10 (1985) 185–194. ·Zbl 0565.90063 ·doi:10.1287/moor.10.2.185
[9]K.C. Kiwiel, ”A method for minimizing the sum of a convex function and a continuously differentiable function”,Journal of Optimization Theory and Applications, to appear. ·Zbl 0562.90073
[10]K.C. Kiwiel, ”A method for solving certain quadratic programming problems arising in nonsmooth optimization”,IMA Journal of Numerical Analysis, to appear.
[11]C. Lemarechal, ”Numerical experiments in nonsmooth optimization”, in: E.A. Nurminski, ed.,Progress in nonsmooth optimization, CP-82-S8 (International Institute for Applied Systems Analysis, Laxenburg, Austria, 1982) pp. 61–84.
[12]C. Lemaréchal and R. Mifflin, eds.,Nonsmooth optimization (Pergamon Press, Oxford, 1978). ·Zbl 0398.90090
[13]C. Lemaréchal, J.-J. Strodiot and A. Bihain, ”On a bundle algorithm for nonsmooth minimization”, in: O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.,Nonlinear programming 4 (Academic Press, New York, 1981) pp. 245–281. ·Zbl 0533.49023
[14]K. Madsen and J. Schjaer-Jacobsen, ”Linearly constrained minimax optimization”,Mathematical Programming 14 (1978) 208–223. ·Zbl 0375.65034 ·doi:10.1007/BF01588966
[15]R. Mifflin, ”An algorithm for constrained optimization with semismooth functions”,Mathematics of Operations Research 2 (1977) 191–207. ·Zbl 0395.90069 ·doi:10.1287/moor.2.2.191
[16]R. Mifflin, ”A modification and an extension of Lemaréchal’s algorithm for nonsmooth minimization”,Mathematical Programming Study 17 (1982) 77–90. ·Zbl 0476.65047
[17]E. Polak, D.Q. Mayne and Y. Wardi, ”On the extension of constrained optimization algorithms from differentiable to nondifferentiable problems”,SIAM Journal on Control and Optimization 21 (1983) 179–203. ·Zbl 0503.49021 ·doi:10.1137/0321010
[18]R.T. Rockafellar,Convex analysis (Princeton University Press, Princeton, New Jersey,. 1970). ·Zbl 0193.18401
[19]J.-J. Strodiot, V. Hien Nguyen and N. Heukems, ”{\(\epsilon\)}-Optimal solutions in nondifferentiable convex programming and related questions”,Mathematical Programming 25 (1982) 307–328. ·Zbl 0495.90067 ·doi:10.1007/BF02594782
[20]J.-J. Strodiot and V. Hien Nguyen, ”An algorithm for minimizing nondifferentiable convex functions under linear constraints”, in: P. Thoft-Christensen, ed.,System modelling and optimization, Lecture Notes in Control and Information Sciences 59 (Springer-Verlag, Berlin, 1984) pp. 338–344. ·Zbl 0551.90075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp