Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A competitive (dual) simplex method for the assignment problem.(English)Zbl 0596.90064

The worst case complexity of the simplex method is known to be exponential for general liner programming problems. For the linear assignment problem the author presents new pivot choice rules, and shows that the worst case complexity of the dual simplex method reduces to \(\left( \begin{matrix} n-1\\ 2\end{matrix} \right)\) pivots and \(0(n^ 3)\) time, when these rules are applied (n denotes the number of assignments). It is argued that the average number of pivots is at most n log n.
Reviewer: M.Bastian

MSC:

90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
90C05 Linear programming
68Q25 Analysis of algorithms and problem complexity
65K05 Numerical mathematical programming methods

Cite

References:

[1]M.L. Balinski, ”Signature methods for the assignment problem”,Operations Research 33 (1985) 527–537. ·Zbl 0583.90064 ·doi:10.1287/opre.33.3.527
[2]M.L. Balinski, ”Signatures des points extrêmes du polyhèdres dual du problème de transport”,Comptes Rendus de l’Académie des Sciences de Paris 296 (1983), Série I, 456–459. ·Zbl 0527.90069
[3]M.L. Balinski, ”The Hirsch conjecture for dual transportation polyhedra”,Mathematics of Operations Research 9 (1984) 629–633. ·Zbl 0555.90071 ·doi:10.1287/moor.9.4.629
[4]M.L. Balinski and Andrew Russakoff, ”Faces of dual transportation polyhedra”,Mathematical Programming Study 22 (1984) 1–8. ·Zbl 0553.90066
[5]R. Barr, F. Glover and D. Klingman, ”The alternating path basis algorithm for assignment problems”,Mathematical Programming 13 (1977) 1–13. ·Zbl 0378.90097 ·doi:10.1007/BF01584319
[6]W.H. Cunningham, ”A network simplex method”,Mathematical Programming 11 (1976) 105–116. ·Zbl 0352.90039 ·doi:10.1007/BF01580379
[7]W.H. Cunningham, ”Theoretical properties of the network simplex method”,Mathematics of Operations Research 4 (1979) 196–208. ·Zbl 0412.90068 ·doi:10.1287/moor.4.2.196
[8]J. Edmonds and R.M. Karp, ”Theoretical improvements in algorithmic efficiency for network flow problems”,Journal of the Association for Computing Machinery 19 (1972) 248–264. ·Zbl 0318.90024
[9]Donald Goldfarb, ”Efficient dual simplex methods for the assignment problem”,Mathematical Programming 33 (1985) 187–203. ·Zbl 0578.90051 ·doi:10.1007/BF01582245
[10]Ming S. Hung, ”A polynomial simplex method for the assignment problem”,Operations Research 31 (1983) 595–600. ·Zbl 0519.90056 ·doi:10.1287/opre.31.3.595
[11]James Orlin, ”On the simplex algorithm for networks and generalized networks”, to appear inMathematical Prógramming. ·Zbl 0592.90031
[12]E. Roohy-Laleh, ”Improvements to the theoretical efficiency of the network simplex method”, Ph.D. Thesis, Carleton University, 1981.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp